Created
August 22, 2018 09:30
-
-
Save pgsin/35bdc96f89a7c0ff431d9dfd8df2ee6a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using System; | |
using System.Collections.Generic; | |
using System.IO; | |
using System.Linq; | |
using System.Text; | |
using System.Threading.Tasks; | |
using TensorFlow; | |
namespace MachineLearning | |
{ | |
class Program | |
{ | |
private static string _modelPath; | |
static void Main(string[] args) | |
{ | |
// Path of the Frozen model | |
_modelPath = "D:\\net_Repos\\net\\MachineLearning\\Model\\frozen_model.pb"; | |
string modelFile = _modelPath; | |
float[,] data = {{3, 10, 7, 20, 5, 9, 7, 9, 4, 3}, | |
{ 3, 5, 7, 4, 5, 9, 7, 9, 4, 3}, | |
{ 2, 8, 8, 7, 8, 5, 5, 9, 7, 2}}; | |
// TensorflowSharp Session | |
using (var graph = new TFGraph()){ | |
var model = File.ReadAllBytes(modelFile); | |
graph.Import(model); | |
Console.Write("reached here"); | |
var session = new TFSession(graph); | |
var runner = session.GetRunner(); | |
Console.Write("reached here"); | |
// AddInput is the input node and Fetch is the output node in Tensorflow graph | |
runner.AddInput (graph ["Placeholder/inputs_placeholder"] [0], data).Fetch (graph ["Accuracy/predictions"] [0]); | |
var output = runner.Run(); | |
var result = output[0]; | |
var se = (Boolean[,])result.GetValue(jagged: false); | |
Console.WriteLine ("{0}[1]", result); | |
for (int i = 0; i < se.GetLength(0); i++){ | |
for (int j = 0; j < se.GetLength(1); j++){ | |
Console.WriteLine("{0}", se[i, j]); | |
} | |
} | |
} | |
Console.ReadLine(); | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment