Created
November 7, 2015 20:17
-
-
Save pgtwitter/cb18c50b531f4f9daea1 to your computer and use it in GitHub Desktop.
chainer で XOR
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#! /usr/bin/env python | |
#encoding: utf-8 | |
import numpy as np | |
import chainer.functions as F | |
from chainer import FunctionSet, Variable, optimizers | |
model= FunctionSet( | |
l1 = F.Linear(2, 2), | |
l2 = F.Linear(2, 1) | |
) | |
def forward(x): | |
return F.sigmoid(model.l2(F.sigmoid(model.l1(x)))) | |
def calc(x_data): | |
x = Variable(x_data.reshape(1,2).astype(np.float32), volatile=False) | |
h = forward(x) | |
return h | |
def train(x_data, y_data): | |
h = calc(x_data) | |
y = Variable(y_data.reshape(1,1).astype(np.float32), volatile=False) | |
optimizer.zero_grads() | |
error = F.mean_squared_error(h, y) | |
error.backward() | |
optimizer.update() | |
return error.data | |
#optimizer = optimizers.AdaDelta(rho=0.95, eps=1e-06) | |
#optimizer = optimizers.AdaGrad(lr=0.001, eps=1e-08) | |
#optimizer = optimizers.Adam(alpha=0.001, beta1=0.9, beta2=0.999, eps=1e-08) | |
#optimizer = optimizers.MomentumSGD(lr=0.01, momentum=0.9) | |
#optimizer = optimizers.NesterovAG(lr=0.01, momentum=0.9) | |
optimizer = optimizers.RMSprop(lr=0.01, alpha=0.99, eps=1e-08) | |
#optimizer = optimizers.SGD(lr=0.01) | |
optimizer.setup(model) | |
data_xor = [ | |
[np.array([0.25, 0.25]), np.array([0])], | |
[np.array([0.25, 0.75]), np.array([1])], | |
[np.array([0.75, 0.25]), np.array([1])], | |
[np.array([0.75, 0.75]), np.array([0])], | |
] | |
N = len(data_xor) | |
print "###学習前###" | |
for j in range(0, N): | |
x, t= data_xor[j] | |
h = calc(x) | |
print "{} -> {} : {}".format(x, h.data, t) | |
#学習 | |
err= [] | |
for i in range(0, 5000): | |
perm = np.random.permutation(N) | |
s= 0; | |
for j in range(0, N): | |
x, t= data_xor[perm[j]] | |
s+= train(x, t) | |
err.append(s) | |
print "###学習後###" | |
for j in range(0, N): | |
x, t= data_xor[j] | |
h = calc(x) | |
print "{} -> {} : {}".format(x, h.data, t) | |
print "###テスト###" | |
test_xor = [ | |
[np.array([0, 0]), np.array([0])], | |
[np.array([0, 1]), np.array([1])], | |
[np.array([1, 0]), np.array([1])], | |
[np.array([1, 1]), np.array([0])], | |
] | |
for j in range(0, len(test_xor)): | |
x, t= test_xor[j] | |
h = calc(x) | |
print "{} -> {} : {}".format(x, h.data, t) | |
#誤差の推移 | |
if (True): | |
import matplotlib.pyplot as plt | |
plt.plot(err) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment