Created
November 18, 2016 07:27
-
-
Save phelrine/0e7fcae91ecad851cbabf920579d1af6 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
from pydub import AudioSegment, silence | |
import numpy as np | |
import matplotlib.pyplot as plt | |
SAMPLING_RATE = 44100 | |
# THRESHOLD = 50 | |
# CONDITION_INTERVAL = 100 | |
THRESHOLD = 50 | |
CONDITION_INTERVAL = 30 | |
OFFSET = 1 | |
def main(): | |
audio_segment = AudioSegment.from_mp3(sys.argv[1]) | |
start_segment = audio_segment[OFFSET * 1000:15 * 1000] | |
end_segment = audio_segment[-15 * 1000:-1000 * OFFSET] | |
start_offset = detect_silence(start_segment.get_array_of_samples(), threshold = 50) | |
end_offset = detect_silence(end_segment.get_array_of_samples(), threshold = 10, reversed = True) | |
print "%lf\t%lf" % (start_offset, end_offset) | |
def detect_silence(segment, threshold, reversed = False): | |
samples = np.array(segment) | |
channel_data = samples.reshape(len(samples) / 2, 2) | |
index = np.argmin(np.abs(np.average(channel_data, axis = 0))) | |
sample_width = SAMPLING_RATE * 0.01 | |
sample_points = int(len(channel_data) / sample_width) | |
means = np.zeros(sample_points) | |
stds = np.zeros(sample_points) | |
for i in range(sample_points): | |
sample_index = i * sample_width | |
data = [] | |
if reversed: | |
data = channel_data[int(sample_index - SAMPLING_RATE * 0.05):int(sample_index), index] | |
else: | |
data = channel_data[int(sample_index):int(sample_index + SAMPLING_RATE * 0.05), index] | |
if len(data) > 0: | |
means[i] = np.average(np.abs(data)) | |
stds[i] = np.std(data) | |
sample_count = 0 | |
for i in range(sample_points): | |
data = [] | |
if reversed: | |
data = (stds[-(i + CONDITION_INTERVAL):-i] - np.min(stds)) > THRESHOLD | |
else: | |
data = (stds[i:i + CONDITION_INTERVAL] - np.min(stds)) > THRESHOLD | |
if len(data) > 0 and np.all(data): | |
sample_count = i | |
break | |
else: | |
sample_count = sample_points | |
# plt.subplot(3, 1, 1) | |
# plt.plot(means, color = 'g') | |
# plt.subplot(3, 1, 2) | |
# plt.plot((stds - np.min(stds))[0:200 * sample_width]) | |
# plt.subplot(3, 1, 3) | |
# plt.plot(channel_data[:, index]) | |
# plt.show() | |
return float(sample_count * sample_width) / SAMPLING_RATE + OFFSET | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment