-
-
Save phelrine/3174352 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# -*- coding:utf-8 -*- | |
import sys | |
import numpy as np | |
from scipy.interpolate import interp1d | |
# from scipy.interpolate import UnivariateSpline | |
def read_csv2(data): | |
x = data[:, 1] | |
y = data[:, 2] | |
z = data[:, 3] | |
for i, v in enumerate(z): | |
if v == 100 and z[i-1] != 100: | |
z[i-1] = 100 | |
t1 = np.cumsum(data[:, 4]) - data[0, 4] | |
t2 = np.arange(0, t1[-1], 0.02) | |
return np.vstack([t2, [func(t2) for func in (interp1d(t1, p) for p in (x, y, z))]]).T | |
def trans_data(filename): | |
data1 = read_csv2(np.loadtxt(filename, delimiter = ",")) | |
data2 = (data1[:, 1:4] - np.average(data1[:, 1:4], axis = 0)) / np.std(data1[:, 1:4], axis = 0) | |
data2 = data2 + (np.random.randn(*data2.shape) / 10) | |
v = np.vstack([0.5 * data2[1], | |
0.5 * (data2[2:] - data2[:-2]), | |
-0.5 * data2[-2]]) | |
return np.hstack([data2, v]) | |
if __name__ == "__main__": | |
usecol = (0, 1, 3, 4) | |
np.savetxt(sys.argv[2], trans_data(sys.argv[1])[:, usecol], delimiter = "\t", fmt = "%0.6f") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment