Created
April 3, 2020 20:31
-
-
Save phil8192/83c254dddc0c626b3106ce78e79a7469 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class FedAvg(BaseEstimator, ClassifierMixin): | |
def __init__(self, | |
n_runners=1, | |
sample_size=1, | |
rounds=1, | |
combine='weighted', | |
partition_params={ | |
'scheme': 'uniform' | |
}, | |
runner_hyperparams={ | |
'epochs': 1, | |
'lr': 0.15, | |
'batch_size': 0 | |
}, | |
intercept_init=None, | |
coef_init=None): | |
self.intercept_ = intercept_init | |
self.coef_ = coef_init | |
self.n_runners = n_runners | |
self.sample_size = sample_size | |
self.rounds = rounds | |
self.combine = combine | |
self.partition_params = partition_params | |
self.runner_hyperparams = runner_hyperparams | |
self.models = [] | |
def _collect_models(self, runners, N): | |
r_intercepts, r_coefs, r_weights = [], [], [] | |
self.models = [] | |
for runner in random.sample(runners, k=self.sample_size): | |
r_model = runner.optimise(self.intercept_, self.coef_, self.runner_hyperparams) | |
self.models.append(r_model) | |
r_intercepts.append(r_model.intercept_) | |
r_coefs.append(r_model.coef_) | |
r_weights.append(runner.dataset_size()/N if self.combine == 'weighted' else 1/self.sample_size) | |
return r_intercepts, r_coefs, r_weights | |
# FedAvg algo. | |
def fit(self, X, y): | |
if self.intercept_ is None or self.coef_ is None: | |
features = X.shape[1] | |
self.intercept_ = np.zeros(1) | |
self.coef_ = np.zeros((1, features)) | |
N = X.shape[0] | |
runners = init_runners(X_train, y_train, self.n_runners, **self.partition_params) | |
for _ in range(self.rounds): | |
r_intercepts, r_coefs, r_weights = self._collect_models(runners, N) | |
self.intercept_ = np.average(r_intercepts, axis=0, weights=r_weights) | |
self.coef_ = np.average(r_coefs, axis=0, weights=r_weights) | |
self.global_model = set_weights(self.intercept_, self.coef_, np.unique(y)) | |
return self | |
def predict(self, X): | |
if not hasattr(self, 'global_model'): | |
raise Exception("model not trained") | |
return self.global_model.predict(X) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment