Skip to content

Instantly share code, notes, and snippets.

View philippmuench's full-sized avatar

Philipp Münch philippmuench

View GitHub Profile
@technoweenie
technoweenie / gist:1072829
Created July 8, 2011 21:12
.netrc file so you can push/pull to https git repos without entering your creds all the time
machine github.com
login technoweenie
password SECRET
machine api.github.com
login technoweenie
password SECRET
@dAnjou
dAnjou / flask-upload
Created June 5, 2012 12:35
Flask upload example
<VirtualHost *>
ServerName example.com
WSGIDaemonProcess www user=max group=max threads=5
WSGIScriptAlias / /home/max/Projekte/flask-upload/flask-upload.wsgi
<Directory /home/max/Projekte/flask-upload>
WSGIProcessGroup www
WSGIApplicationGroup %{GLOBAL}
Order deny,allow
@agnoster
agnoster / README.md
Last active September 25, 2024 09:27
My ZSH Theme

agnoster.zsh-theme

A ZSH theme optimized for people who use:

  • Solarized
  • Git
  • Unicode-compatible fonts and terminals (I use iTerm2 + Menlo)

For Mac users, I highly recommend iTerm 2 + Solarized Dark

@SachaEpskamp
SachaEpskamp / global.R
Last active October 22, 2021 08:55
A general shiny app to import and export data to R. Note that this can be used as a starting point for any app that requires data to be loaded into Shiny.
library("shiny")
library("foreign")
@PoisonAlien
PoisonAlien / VarScan2_format_converter.py
Last active May 3, 2021 12:26
Takes output file generated by VarScan2 somatic programme and converts the formats. See here for updated versions https://github.com/PoisonAlien/varscan_accessories
__author__ = "Anand M"
'''
Takes output file generated by VarScan2 somatic programme and converts the formats.
'''
import argparse, math, re
parser = argparse.ArgumentParser(
description="Converts VarScan2 somatic vcf to native format and vice-versa.\nInput is automatically detected")
@erikbern
erikbern / install-tensorflow.sh
Last active June 26, 2023 00:40
Installing TensorFlow on EC2
# Note – this is not a bash script (some of the steps require reboot)
# I named it .sh just so Github does correct syntax highlighting.
#
# This is also available as an AMI in us-east-1 (virginia): ami-cf5028a5
#
# The CUDA part is mostly based on this excellent blog post:
# http://tleyden.github.io/blog/2014/10/25/cuda-6-dot-5-on-aws-gpu-instance-running-ubuntu-14-dot-04/
# Install various packages
sudo apt-get update
@ipbastola
ipbastola / clean-up-boot-partition-ubuntu.md
Last active August 16, 2024 13:39
Safest way to clean up boot partition - Ubuntu 14.04LTS-x64, Ubuntu 16.04LTS-x64

Safest way to clean up boot partition - Ubuntu 14.04LTS-x64, Ubuntu 16.04LTS-x64

Reference

Case I: if /boot is not 100% full and apt is working

1. Check the current kernel version

$ uname -r 
@ivanleoncz
ivanleoncz / flask_app_logging.py
Last active May 23, 2021 07:25
Demonstration of logging feature for a Flask App.
#/usr/bin/python3
""" Demonstration of logging feature for a Flask App. """
from logging.handlers import RotatingFileHandler
from flask import Flask, request, jsonify
from time import strftime
__author__ = "@ivanleoncz"
import logging
@tokestermw
tokestermw / rnn_viz_keras.py
Last active April 6, 2019 18:40
Recurrent Neural Network (RNN) visualizations using Keras.
from __future__ import print_function
from keras import backend as K
from keras.engine import Input, Model, InputSpec
from keras.layers import Dense, Activation, Dropout, Lambda
from keras.layers import Embedding, LSTM
from keras.optimizers import Adam
from keras.preprocessing import sequence
from keras.utils.data_utils import get_file
from keras.datasets import imdb
@jjallaire
jjallaire / multiplicative_lstm.R
Created October 26, 2018 13:15
Custom Multiplicative LSTM Layer for R Keras
library(keras)
library(reticulate)
layer_multiplicative_lstm <-function(
object, units, activation = "tanh", recurrent_activation = "hard_sigmoid", use_bias = TRUE,
return_sequences = FALSE, return_state = FALSE, go_backwards = FALSE, stateful = FALSE, unroll = FALSE,
kernel_initializer = "glorot_uniform", recurrent_initializer = "orthogonal", bias_initializer = "zeros",
unit_forget_bias = TRUE, kernel_regularizer = NULL, recurrent_regularizer = NULL, bias_regularizer = NULL,