A ZSH theme optimized for people who use:
- Solarized
- Git
- Unicode-compatible fonts and terminals (I use iTerm2 + Menlo)
For Mac users, I highly recommend iTerm 2 + Solarized Dark
machine github.com | |
login technoweenie | |
password SECRET | |
machine api.github.com | |
login technoweenie | |
password SECRET |
<VirtualHost *> | |
ServerName example.com | |
WSGIDaemonProcess www user=max group=max threads=5 | |
WSGIScriptAlias / /home/max/Projekte/flask-upload/flask-upload.wsgi | |
<Directory /home/max/Projekte/flask-upload> | |
WSGIProcessGroup www | |
WSGIApplicationGroup %{GLOBAL} | |
Order deny,allow |
library("shiny") | |
library("foreign") |
__author__ = "Anand M" | |
''' | |
Takes output file generated by VarScan2 somatic programme and converts the formats. | |
''' | |
import argparse, math, re | |
parser = argparse.ArgumentParser( | |
description="Converts VarScan2 somatic vcf to native format and vice-versa.\nInput is automatically detected") |
# Note – this is not a bash script (some of the steps require reboot) | |
# I named it .sh just so Github does correct syntax highlighting. | |
# | |
# This is also available as an AMI in us-east-1 (virginia): ami-cf5028a5 | |
# | |
# The CUDA part is mostly based on this excellent blog post: | |
# http://tleyden.github.io/blog/2014/10/25/cuda-6-dot-5-on-aws-gpu-instance-running-ubuntu-14-dot-04/ | |
# Install various packages | |
sudo apt-get update |
$ uname -r
#/usr/bin/python3 | |
""" Demonstration of logging feature for a Flask App. """ | |
from logging.handlers import RotatingFileHandler | |
from flask import Flask, request, jsonify | |
from time import strftime | |
__author__ = "@ivanleoncz" | |
import logging |
from __future__ import print_function | |
from keras import backend as K | |
from keras.engine import Input, Model, InputSpec | |
from keras.layers import Dense, Activation, Dropout, Lambda | |
from keras.layers import Embedding, LSTM | |
from keras.optimizers import Adam | |
from keras.preprocessing import sequence | |
from keras.utils.data_utils import get_file | |
from keras.datasets import imdb |
library(keras) | |
library(reticulate) | |
layer_multiplicative_lstm <-function( | |
object, units, activation = "tanh", recurrent_activation = "hard_sigmoid", use_bias = TRUE, | |
return_sequences = FALSE, return_state = FALSE, go_backwards = FALSE, stateful = FALSE, unroll = FALSE, | |
kernel_initializer = "glorot_uniform", recurrent_initializer = "orthogonal", bias_initializer = "zeros", | |
unit_forget_bias = TRUE, kernel_regularizer = NULL, recurrent_regularizer = NULL, bias_regularizer = NULL, |