Last active
July 19, 2017 05:43
-
-
Save philipschwarz/8ef5b56762498ee8e6bcda6728467b49 to your computer and use it in GitHub Desktop.
Robert Martin in clean code: "I wrote the module in Listing 4-7...[as an] example of bad coding and commenting style. Kent Beck then refactored this code into a much more pleasant form in front of several dozen enthusiastic students. ...See how many different comment problems you can find...In Listing 4-8 you can see a refactored version"
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* This class Generates prime numbers up to a user specified | |
* maximum. The algorithm used is the Sieve of Eratosthenes. | |
* <p> | |
* Eratosthenes of Cyrene, b. c. 276 BC, Cyrene, Libya -- | |
* d. c. 194, Alexandria. The first man to calculate the | |
* circumference of the Earth. Also known for working on | |
* calendars with leap years and ran the library at Alexandria. | |
* <p> | |
* The algorithm is quite simple. Given an array of integers | |
* starting at 2. Cross out all multiples of 2. Find the next | |
* uncrossed integer, and cross out all of its multiples. | |
* Repeat untilyou have passed the square root of the maximum | |
* value. | |
* | |
* @author Alphonse | |
* @version 13 Feb 2002 atp | |
*/ | |
import java.util.*; | |
public class GeneratePrimes | |
{ | |
/** | |
* @param maxValue is the generation limit. | |
*/ | |
public static int[] generatePrimes(int maxValue) | |
{ | |
if (maxValue >= 2) // the only valid case | |
{ | |
// declarations | |
int s = maxValue + 1; // size of array | |
boolean[] f = new boolean[s]; | |
int i; | |
// initialize array to true. | |
for (i = 0; i < s; i++) | |
f[i] = true; | |
// get rid of known non-primes | |
f[0] = f[1] = false; | |
// sieve | |
int j; | |
for (i = 2; i < Math.sqrt(s) + 1; i++) | |
{ | |
if (f[i]) // if i is uncrossed, cross its multiples. | |
{ | |
for (j = 2 * i; j < s; j += i) | |
f[j] = false; // multiple is not prime | |
} | |
} | |
// how many primes are there? | |
int count = 0; | |
for (i = 0; i < s; i++) | |
{ | |
if (f[i]) | |
count++; // bump count. | |
} | |
int[] primes = new int[count]; | |
// move the primes into the result | |
for (i = 0, j = 0; i < s; i++) | |
{ | |
if (f[i]) // if prime | |
primes[j++] = i; | |
} | |
return primes; // return the primes | |
} | |
else // maxValue < 2 | |
return new int[0]; // return null array if bad input. | |
} | |
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* This class Generates prime numbers up to a user specified | |
* maximum. The algorithm used is the Sieve of Eratosthenes. | |
* Given an array of integers starting at 2: | |
* Find the first uncrossed integer, and cross out all its | |
* multiples. Repeat until there are no more multiples | |
* in the array. | |
*/ | |
public class PrimeGenerator | |
{ | |
private static boolean[] crossedOut; | |
private static int[] result; | |
public static int[] generatePrimes(int maxValue) | |
{ | |
if (maxValue < 2) | |
return new int[0]; | |
else | |
{ | |
uncrossIntegersUpTo(maxValue); | |
crossOutMultiples(); | |
putUncrossedIntegersIntoResult(); | |
return result; | |
} | |
} | |
private static void uncrossIntegersUpTo(int maxValue) | |
{ | |
crossedOut = new boolean[maxValue + 1]; | |
for (int i = 2; i < crossedOut.length; i++) | |
crossedOut[i] = false; | |
} | |
private static void crossOutMultiples() | |
{ | |
int limit = determineIterationLimit(); | |
for (int i = 2; i <= limit; i++) | |
if (notCrossed(i)) | |
crossOutMultiplesOf(i); | |
} | |
private static int determineIterationLimit() | |
{ | |
// Every multiple in the array has a prime factor that | |
// is less than or equal to the root of the array size, | |
// so we don't have to cross out multiples of numbers | |
// larger than that root. | |
double iterationLimit = Math.sqrt(crossedOut.length); | |
return (int) iterationLimit; | |
} | |
private static void crossOutMultiplesOf(int i) | |
{ | |
for (int multiple = 2*i; | |
multiple < crossedOut.length; | |
multiple += i) | |
crossedOut[multiple] = true; | |
} | |
private static boolean notCrossed(int i) | |
{ | |
return crossedOut[i] == false; | |
} | |
private static void putUncrossedIntegersIntoResult() | |
{ | |
result = new int[numberOfUncrossedIntegers()]; | |
for (int j = 0, i = 2; i < crossedOut.length; i++) | |
if (notCrossed(i)) | |
result[j++] = i; | |
} | |
private static int numberOfUncrossedIntegers() | |
{ | |
int count = 0; | |
for (int i = 2; i < crossedOut.length; i++) | |
if (notCrossed(i)) | |
count++; | |
return count; | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment