Last active
August 29, 2015 14:05
-
-
Save phillipberndt/2db94bf5e0c16161dedc to your computer and use it in GitHub Desktop.
Magic squares in Julia
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# These are possibly naïve implementations of magic squares generation | |
# for a micro-benchmark to compare Julia to Python and Matlab | |
# | |
function magic_matlab(n::Int64) | |
# Works exactly as Matlab's magic.m | |
if n % 2 == 1 | |
p = (1:n) | |
M = n * mod(broadcast(+, p', p - div(n+3, 2)), n) + mod(broadcast(+, p', 2p - 2), n) + 1 | |
return M | |
elseif n % 4 == 0 | |
J = div([1:n] % 4, 2) | |
K = J' .== J | |
M = broadcast(+, [1:n:(n*n)]', [0:n-1]) | |
M[K] = n^2 + 1 - M[K] | |
return M | |
else | |
p = div(n, 2) | |
M = magic_matlab(p) | |
M = [M M+2p^2; M+3p^2 M+p^2] | |
if n == 2 | |
return M | |
end | |
i = (1:p) | |
k = (n-2)/4 | |
j = convert(Array{Int}, [(1:k); ((n-k+2):n)]) | |
M[[i; i+p],j] = M[[i+p; i],j] | |
i = k+1 | |
j = [1; i] | |
M[[i; i+p],j] = M[[i+p; i],j] | |
return M | |
end | |
end | |
@vectorize_1arg Int magic_matlab | |
function magic_python(n::Int64) | |
# Works exactly as magic_square.py (from pypy) | |
if n % 2 == 1 | |
m = (n >> 1) + 1 | |
b = n^2 + 1 | |
M = reshape(repmat(1:n:b-n, 1, n+2)[m:end-m], n+1, n)[2:end, :] + | |
reshape(repmat(0:(n-1), 1, n+2), n+2, n)[2:end-1, :]' | |
return M | |
elseif n % 4 == 0 | |
b = n^2 + 1 | |
d = reshape(1:b-1, n, n) | |
d[1:4:n, 1:4:n] = b - d[1:4:n, 1:4:n] | |
d[1:4:n, 4:4:n] = b - d[1:4:n, 4:4:n] | |
d[4:4:n, 1:4:n] = b - d[4:4:n, 1:4:n] | |
d[4:4:n, 4:4:n] = b - d[4:4:n, 4:4:n] | |
d[2:4:n, 2:4:n] = b - d[2:4:n, 2:4:n] | |
d[2:4:n, 3:4:n] = b - d[2:4:n, 3:4:n] | |
d[3:4:n, 2:4:n] = b - d[3:4:n, 2:4:n] | |
d[3:4:n, 3:4:n] = b - d[3:4:n, 3:4:n] | |
return d | |
else | |
m = n >> 1 | |
k = m >> 1 | |
b = m^2 | |
d = repmat(magic_python(m), 2, 2) | |
d[1:m, 1:k] += 3*b | |
d[1+m:end, 1+k:m] += 3*b | |
d[1+k, 1+k] += 3*b | |
d[1+k, 1] -= 3*b | |
d[1+m+k, 1] += 3*b | |
d[1+m+k, 1+k] -= 3*b | |
d[1:m,1+m:n-k+1] += b+b | |
d[1+m:end, 1+m:n-k+1] += b | |
d[1:m, 1+n-k+1:end] += b | |
d[1+m:end, 1+n-k+1:end] += b+b | |
return d | |
end | |
end | |
@vectorize_1arg Int magic_python | |
print("Matlab version: ") | |
@time magic_matlab(3:1000) | |
print("Python version: ") | |
@time magic_python(3:1000) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment