Created
July 15, 2023 23:13
-
-
Save phillipi/038cd0322520f30ff155954a2c4f6971 to your computer and use it in GitHub Desktop.
ML can extrapolate
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
def mk_data(true_theta, noise_sd, N_data_points, data_mean, data_sd): | |
data_x = np.expand_dims(np.random.randn(N_data_points)*data_sd + data_mean,axis=1) | |
data_y = np.zeros(data_x.shape) | |
for k in range(data_y.shape[0]): | |
data_y[k,0] = np.expand_dims(np.array([f(data_x[k,0],true_theta)]),axis=1) + np.random.randn(1)*noise_sd | |
data = np.concatenate([data_x,data_y],axis=1) | |
return data | |
def mk_loss_map(data,f): | |
theta_min = -2 | |
theta_max = 2 | |
[xx,yy] = np.meshgrid(np.linspace(theta_min,theta_max,101), np.linspace(theta_min,theta_max,101)) | |
data_fit_loss = np.zeros(xx.shape) | |
for i in range(xx.shape[0]): | |
for j in range(yy.shape[1]): | |
theta = np.concatenate([xx[[i],j],yy[[i],j]],axis=0) | |
for k in range(data.shape[0]): | |
data_fit_loss[i,j] += loss(f(data[k,0], theta),data[k,1]) | |
data_fit_loss /= data.shape[0] | |
return data_fit_loss, xx, yy | |
def get_best_theta(J,xx,yy): | |
best_theta_idx = np.unravel_index(J.argmin(), J.shape) | |
best_theta = np.concatenate([xx[[best_theta_idx[0]],best_theta_idx[1]], yy[[best_theta_idx[0]],best_theta_idx[1]]], axis=0) | |
return best_theta | |
def mk_plot(J,data,true_theta,best_theta): | |
u = 4 | |
xx = np.linspace(-u,u,101) | |
plt.plot(xx,f(xx,best_theta),c='b',linewidth=2,zorder=1) | |
plt.plot(xx,f(xx,true_theta),'--',c='g',linewidth=3,zorder=2) | |
plt.scatter(data[:,0],data[:,1],c='k',zorder=3) | |
plt.gca().set_xlim(-u,u) | |
plt.gca().set_ylim(-u,u) | |
plt.gca().set_aspect('equal') | |
plt.gca().set_xlabel('$x$') | |
plt.gca().set_ylabel('$y$',rotation=0) | |
def mk_fit(true_theta, noise_sd, N_data_points, data_mean, data_sd): | |
data = mk_data(true_theta, noise_sd, N_data_points, data_mean, data_sd) | |
J, xx, yy = mk_loss_map(data,f) | |
best_theta = get_best_theta(J, xx, yy) | |
return J, best_theta, data | |
def f(x,theta): | |
y = np.sin(theta[1]*x**2) + theta[0]*x | |
return y | |
def loss(x,y): | |
return np.abs(x-y)**0.25 | |
seed = 4 | |
np.random.seed(seed) | |
true_theta = np.array([0.2,-0.5]) | |
noise_sd = 0.2 | |
data_mean = -3 | |
data_sd = 0.5 | |
N_data_points = 25 | |
J, best_theta, data = mk_fit(true_theta, noise_sd, N_data_points, data_mean, data_sd) | |
mk_plot(J, data, true_theta, best_theta) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Noticed some questions on this: "why loss **0.25?" "why grid search?"
-- For visualization of J. You can call plt.imshow(J) to get a nice looking loss landscape.