Skip to content

Instantly share code, notes, and snippets.

@philschmid
Last active April 26, 2021 11:18
Show Gist options
  • Select an option

  • Save philschmid/403b999733de10bd8f175803db28ea97 to your computer and use it in GitHub Desktop.

Select an option

Save philschmid/403b999733de10bd8f175803db28ea97 to your computer and use it in GitHub Desktop.
# automatic pipeline
pipe=Pipeline('summarization',model="bart")
pipe()
# preprocess(input)
# model(input)
# postprocess(input)
#-------------------------------------------------------------------------#
# manual pipeline
model_id='bart-large-cnn'
tokenizer='bart-large-cnn'
preprocess_summary = PreProcessSummaryPipeline(tokenizer)
model_summary = PytorchModelPipeline(tokenizer)
postprocess_summary = PostProcessSummaryPipeline(tokenizer)
pre = preprocess_summary(input)
pred = ModelSummaryPipeline(pre)
post = postprocess_summary(pred)
#-------------------------------------------------------------------------#
# chained pipeline
# summary steps
model_id='bart-large-cnn'
tokenizer='bart-large-cnn'
preprocess_summary = PreProcessSummaryPipeline(tokenizer)
model_summary = PytorchModelPipeline(model_id)
postprocess_summary = PostProcessSummaryPipeline(tokenizer)
# token classification steps
model_id='my-onnx-model'
tokenizer='bert-base-cased'
preprocess_token = PreProcessSummaryPipeline(tokenizer)
model_token = ONNXModelPipeline(model_id)
postprocess_model = PostProcessSummaryPipeline(tokenizer)
pipeline=Pipeline([
preproces_summary,
model_summary,
postprocess_summary,
preprocess_token,
model_token,
postprocess_model
])
pipeline(inuput)
# preprocess_summary(input)
# model_summary(input)
# postprocess_summary(input)
# preprocess_token(input)
# model_token(input)
# return postprocess_model(input)
#-------------------------------------------------------------------------#
# remote pipeline
preprocess_summary = PreProcessSummaryPipeline()
remote_model_summary = TritonClientPipeline() # wrapper for e.g. triton.client with __call__
postprocess_summary = PostProcessSummaryPipeline()
pipeline=Pipeline([preproces_summary,remote_model_summary,postprocess_summary])
pipeline()
#-------------------------------------------------------------------------#
# parallel pipeline
preprocess = PreProcessPipeline()
model_sentiment = PytorchModelPipeline()
model_news_class = PytorchModelPipeline()
postprocess = PostProcessPipeline()
pipeline=Pipeline([preprocess,[model_sentiment,model_news_class],postprocess])
pipeline()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment