Created
October 4, 2019 11:04
-
-
Save philschmid/acda0a12a3be5af580c72a7ad3949050 to your computer and use it in GitHub Desktop.
document_scanner_python
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import cv2 | |
def scan(input_image="test.jpg") | |
#read image | |
img = cv2.imread(input_image,1) | |
#resize image | |
img = cv2.resize(img,(600,800)) | |
#convert image to grayscale | |
grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
#blurr image to smooth | |
blurr = cv2.GaussianBlur(grey, (5,5),0) | |
#finding edges | |
edge = cv2.Canny(blurr, 0, 50) | |
#apadtive threshold and canny gave similar final output | |
#threshold = cv2.adaptiveThreshold(blurr ,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,11,2) | |
#find contours in thresholded image and sort them according to decreasing area | |
_, contours, _ = cv2.findContours(edge, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) | |
contours = sorted(contours, key=cv2.contourArea, reverse= True) | |
#contour approximation | |
for i in contours: | |
elip = cv2.arcLength(i, True) | |
approx = cv2.approxPolyDP(i,0.08*elip, True) | |
if len(approx) == 4 : | |
doc = approx | |
break | |
#draw contours | |
cv2.drawContours(img, [doc], -1, (0, 255, 0), 2) | |
#reshape to avoid errors ahead | |
doc=doc.reshape((4,2)) | |
#create a new array and initialize | |
new_doc = np.zeros((4,2), dtype="float32") | |
Sum = doc.sum(axis = 1) | |
new_doc[0] = doc[np.argmin(Sum)] | |
new_doc[2] = doc[np.argmax(Sum)] | |
Diff = np.diff(doc, axis=1) | |
new_doc[1] = doc[np.argmin(Diff)] | |
new_doc[3] = doc[np.argmax(Diff)] | |
(tl,tr,br,bl) = new_doc | |
#find distance between points and get max | |
dist1 = np.linalg.norm(br-bl) | |
dist2 = np.linalg.norm(tr-tl) | |
maxLen = max(int(dist1),int(dist2)) | |
dist3 = np.linalg.norm(tr-br) | |
dist4 = np.linalg.norm(tl-bl) | |
maxHeight = max(int(dist3), int(dist4)) | |
dst = np.array([[0,0],[maxLen-1, 0],[maxLen-1, maxHeight-1], [0, maxHeight-1]], dtype="float32") | |
N = cv2.getPerspectiveTransform(new_doc, dst) | |
warp = cv2.warpPerspective(img, N, (maxLen, maxHeight)) | |
img2 = cv2.cvtColor(warp, cv2.COLOR_BGR2GRAY) | |
img2 = cv2.resize(img2,(600,800)) | |
#cv2.imwrite("edge.jpg", edge) | |
#cv2.imwrite("contour.jpg", img) | |
#cv2.imwrite("Scanned.jpg", img2) | |
# show all images | |
cv2.imshow("Original.jpg",img) | |
cv2.imshow("Grey.jpg",grey) | |
cv2.imshow("Gaussian_Blur.jpb",blurr) | |
cv2.imshow("Canny_Edge.jpg",edge) | |
#cv2.imshow("Threshold.jpg",threshold) | |
cv2.imshow("Contours.jpg", img) | |
cv2.imshow("Scanned.jpg", img2) | |
cv2.waitKey(0) | |
cv2.destroyAllWindows() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment