Skip to content

Instantly share code, notes, and snippets.

View philschmid's full-sized avatar

Philipp Schmid philschmid

View GitHub Profile
{
"$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"metadata": {
"_generator": {
"name": "bicep",
"version": "0.12.40.16777",
"templateHash": "4423847801202994493"
}
},
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
import tensorflow as tf
from tensorflow.keras.optimizers import Adam
from transformers import TFAutoModelForSequenceClassification,AutoTokenizer
from datasets import load_dataset
# load model and tokenizer
model_id = "distilbert-base-uncased"
model = TFAutoModelForSequenceClassification.from_pretrained(model_id, num_labels=5)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Setup Ubuntu
sudo apt update --yes
sudo apt upgrade --yes
# Get Miniconda and make it the main Python interpreter
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda.sh
bash ~/miniconda.sh -b -p ~/miniconda
rm ~/miniconda.sh
export PATH=~/miniconda/bin:$PATH
# usage:
# deepspeed --num_gpus 8 bloom-ds-inference.py --name bigscience/bloom
#
# to run benchmarks:
# deepspeed --num_gpus 8 bloom-ds-inference.py --name bigscience/bloom --benchmark
#
# This is going to improve, but at the moment, the process is a bit cumbersome - we first use
# 1. use Deepspeed-ZeRO to instantiate the model on GPUs, w/o loading the checkpoints,
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
from sagemaker.huggingface.model import HuggingFaceModel
from sagemaker.serverless import ServerlessInferenceConfig
from sagemaker.serializers import DataSerializer
import sagemaker
import boto3
try:
role = sagemaker.get_execution_role()
except ValueError:
iam = boto3.client('iam')
apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
generateName: xgboost-trainer-
annotations: {pipelines.kubeflow.org/kfp_sdk_version: 1.8.12, pipelines.kubeflow.org/pipeline_compilation_time: '2022-04-19T13:58:21.551241',
pipelines.kubeflow.org/pipeline_spec: '{"description": "A trainer that does end-to-end
distributed training for XGBoost models.", "inputs": [{"default": "gs://{{kfp-default-bucket}}",
"name": "output", "optional": true}, {"default": "{{kfp-project-id}}", "name":
"project", "optional": true}, {"default": "HALT_ON_ERROR", "name": "diagnostic_mode",
"optional": true}, {"default": "5", "name": "rounds", "optional": true}], "name":
from sagemaker.huggingface import HuggingFaceModel
from sagemaker.serializers import DataSerializer
import sagemaker
role = sagemaker.get_execution_role()
# Hub Model configuration. https://huggingface.co/models
hub = {
'HF_MODEL_ID':'facebook/wav2vec2-base-960h',
'HF_TASK':'automatic-speech-recognition'