Created
July 8, 2018 14:32
-
-
Save phizaz/eef722c3a3c465bf44d611fe396e607e to your computer and use it in GitHub Desktop.
Tensorflow summary v2 eager mode
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import numpy as np | |
tf.enable_eager_execution() | |
save_path = 'logs/test10' | |
graph = tf.Graph() | |
with graph.as_default(): | |
global_step = tf.train.create_global_step() | |
writer = tf.contrib.summary.create_file_writer(save_path) | |
with writer.as_default(): | |
tf.contrib.summary.always_record_summaries() | |
# simulate dataset | |
fake_dataset = np.random.randn(1000, 100).astype(np.float32) | |
fake_label = np.random.randint(low=0, high=9, size=1000) | |
# preparing a fake dataset | |
with graph.as_default(): | |
x = tf.data.Dataset.from_tensor_slices(fake_dataset) | |
y = tf.data.Dataset.from_tensor_slices(fake_label) | |
data = tf.data.Dataset.zip((x, y)) | |
data = data.shuffle(10000) | |
data = data.batch(32) | |
# define the model | |
with graph.as_default(): | |
with writer.as_default(): | |
# construct a simple classifier | |
net = tf.keras.Sequential([ | |
tf.keras.layers.Dense(300, activation=tf.nn.relu), | |
tf.keras.layers.Dense(10) | |
]) | |
optimizer = tf.train.AdamOptimizer(0.001) | |
def train(net, optimizer, x, y): | |
with tf.contrib.eager.GradientTape() as tape: | |
prediction = net(x) | |
loss = tf.losses.sparse_softmax_cross_entropy(y, prediction) | |
grads = tape.gradient(loss, net.variables) | |
grads_vars = zip(grads, net.variables) | |
optimizer.apply_gradients( | |
grads_vars, | |
global_step=tf.train.get_global_step() | |
) | |
# here is how you log every step (n=1) | |
with tf.contrib.summary.record_summaries_every_n_global_steps(1): | |
tf.contrib.summary.scalar('loss', loss) | |
return loss | |
# start the training process | |
with graph.as_default(): | |
with writer.as_default(): | |
# initialize the summary writer | |
tf.contrib.summary.initialize() | |
# run until the dataset is exhausted | |
for x, y in data: | |
loss = train(net, optimizer, x, y) | |
print(float(loss)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment