Created
April 6, 2017 15:34
-
-
Save pilinux/42ebd219abdf940755e4c6ca0096a7c9 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
########## | |
# Arithmetic operation | |
(5 + 2 * 3 + (3 - 1) / 2 + 9) % 2 | |
Out[1]: 1 | |
2**2 # power | |
Out[2]: 4 | |
4**0.5 # square root | |
Out[3]:# 2 | |
8**(1/3) # qubic root | |
Out[4]: 2 | |
8e3 # 8 * 10^3 | |
Out[5]: 8000 | |
8E3 # 8 * 10^3 | |
Out[6]: 8000 | |
########## | |
########## | |
# Assign value to variables and get the summation | |
var1 = 6 | |
var2 = 2 | |
var1 + var2 | |
Out[7]: 8 | |
########## | |
########## | |
# Delete a variable | |
var1 = 6 | |
var2 = 2 | |
var3 = 3 | |
var1 | |
Out[8]: 6 | |
del var1 | |
var1 | |
Out[9]: NameError: name 'var1' is not defined | |
del var2, var3 # to delete multiple variables at a time | |
########## | |
########## | |
# NUmber type conversion | |
# To integer | |
int(5.32) | |
Out[10]: 5 | |
# To float | |
float(320) | |
Out[11]: 320.0 | |
float(21684315646321568) | |
Out[12]: 2.168431564632157e+16 | |
# To complex | |
complex(5) | |
Out[13]: (5+0j) | |
complex(5,2) | |
Out[14]: (5+2j) | |
complex(5,-2) | |
Out[15]: (5-2j) | |
# Absolute value | |
abs(-5) | |
Out[16]: 5 | |
abs(-5.32) | |
Out[17]: 5.32 | |
########## | |
########## | |
# Constants | |
# First, import 'math' module | |
import math | |
math.pi | |
Out[18]: 3.141592653589793 | |
math.e | |
Out[19]: 2.718281828459045 | |
########## | |
########## | |
# Mathematical functions | |
# First, import 'math' module | |
import math | |
# ceil(x): y | y (smallest) >= x and y is an integer | |
math.ceil(5.001) | |
Out[20]: 6 | |
math.ceil(-5.001) | |
Out[21]: 5 | |
# cmp(x,y): -1 if x < y, 0 if x == y, or 1 if x > y | |
# NOTE: Python 3 does not have cmp(x,y) attribute anymore | |
# In Python 3, use (a > b) - (a < b) to for this case | |
a = 3 | |
b = 4 | |
(a > b) - (a < b) | |
Out[22]: -1 | |
a = 3 | |
b = 3 | |
(a > b) - (a < b) | |
Out[23]: 0 | |
a = 3 | |
b = 2 | |
(a > b) - (a < b) | |
Out[24]: 1 | |
# exp(x): exponential of x | e^x | |
math.exp(2) | |
Out[25]: 7.38905609893065 | |
# fabs(x): absolute value | |
math.fabs(-2.32) | |
Out[26]: 2.32 | |
# floor(x): y | y (largest) <= x and y is an integer | |
math.floor(2.32) | |
Out[27]: 2 | |
math.floor(-2.32) | |
Out[28]: -3 | |
# log(x): Natural logarithm (base e) for x when x>0 | |
math.log(3) | |
Out[29]: 1.0986122886681098 | |
# log10(x): Logarithm (base 10) for x when x>0 | |
math.log10(3) | |
Out[30]: 0.47712125471966244 | |
# log2(x): Logarithm (base 2) for x when x>0 | |
math.log2(3) | |
Out[31]: 1.584962500721156 | |
# max(x1, x2, x3, ...): Maximum value from the arguments | |
max(2,5,100) | |
Out[32]: 100 | |
max(-2,-5,-100) | |
Out[33]: -2 | |
# min(x1, x2, x3, ...): Minimum value from the arguments | |
min(2,5,100) | |
Out[34]: 2 | |
min(-2,-5,-100) | |
Out[35]: -100 | |
# modf(x): (y, z) | y is the fractional part and z is the integer part | |
math.modf(-2.1) | |
Out[36]: (-0.10000000000000009, -2.0) | |
math.modf(2.123) | |
Out[37]: (0.12300000000000022, 2.0) | |
math.modf(2) | |
Out[38]: (0.0, 2.0) | |
# pow(x, y): x**y | |
math.pow(2, 3) | |
Out[39]: 8 | |
math.pow(-2, 2) | |
Out[40]: 4 | |
# round(x [,n]): x rounded to n digits from the decimal point | |
round(2.5) | |
Out[41]: 2 | |
round(2.51) | |
Out[42]: 3 | |
round(2.5, 0) | |
Out[43]: 2.0 | |
round(2.51, 0) | |
Out[44]: 3.0 | |
round(2.5, 1) | |
Out[45]: 2.5 | |
round(2.549, 1) | |
Out[46]: 2.5 | |
round(2.559, 1) | |
Out[47]: 2.6 | |
round(-2.549, 1) | |
Out[48]: -2.5 | |
round(-2.559, 1) | |
Out[49]: -2.6 | |
# sqrt(x): Square root | |
math.sqrt(25) | |
Out[50]: 5.0 | |
########## | |
########## | |
# Trigonometric functions | |
# Note: The number π cannot be represented exactly as a floating-point number | |
# So in some cases we won't get the exact value of a trigonometric function | |
# sin(π) will not be exactly 0 for an example. | |
# First, import 'math' module | |
import math | |
# sin(x): x in radian | |
math.sin(0) | |
Out[51]: 0.0 | |
math.sin(math.pi/2) | |
Out[52]: 1.0 | |
math.sin(math.pi/6) | |
Out[53]: 0.49999999999999994 # 0.5 | |
math.sin(math.pi) | |
Out[54]: 1.2246467991473532e-16 # 0 | |
# cos(x): x in radian | |
math.cos(0) | |
Out[55]: 1.0 | |
math.cos(math.pi) | |
Out[56]: -1.0 | |
math.cos(math.pi/6) | |
Out[57]: 0.8660254037844387 | |
# tan(x): x in radian | |
math.tan(0) | |
Out[58]: 0.0 | |
math.tan(math.pi/4) | |
Out[59]: 0.9999999999999999 # 1 | |
math.tan(math.pi/2) | |
Out[60]: 1.633123935319537e+16 # ∞ (infinity) | |
# asin(x): arc sine of x in radian (get the angle in radian from value) | |
math.asin(0) | |
Out[61]: 0.0 | |
math.asin(.5) | |
Out[62]: 0.5235987755982989 # π/4 | |
math.asin(1) | |
Out[63]: 1.5707963267948966 # π/2 | |
# acos(x): arc cosine of x in radian (get the angle in radian from value) | |
math.acos(0) | |
Out[64]: 1.5707963267948966 # π/2 | |
math.acos(1) | |
Out[65]: 0.0 | |
# atan(x): arc tangent of x in radian (get the angle in radian from value) | |
math.atan(0) | |
Out[66]: 0.0 | |
# atan2(y,x): atan(y/x) in radians | |
math.atan2(0,1) | |
Out[67]: 0.0 | |
math.atan2(1,0) | |
Out[68]: 1.5707963267948966 | |
# hypot(x,y): Euclidean norm, sqrt(x*x + y*y) | |
math.hypot(4,3) | |
Out[69]: 5.0 | |
# degrees(x): Converts angle x from radian to degree | |
math.degrees(math.pi) | |
Out[70]: 180.0 | |
# radians(x): Converts angle x from degree to radian | |
math.radians(180) | |
Out[71]: 3.141592653589793 # π | |
########## | |
########## | |
# Random number functions | |
# First, import 'random' module | |
import random | |
# choice(sequence): Choose a random element from a non-empty sequence | |
# sequence - this could be a list, tuple, or string | |
random.choice([1, 2, 3, 4, 5, 6]) | |
Out[72]: 1 | |
random.choice([1, 2, 3, 4, 5, 6]) | |
Out[73]: 6 | |
random.choice([1, 2, 3, 4, 5, 6]) | |
Out[74]: 3 | |
random.choice([1, 2, 3, 4, 5, 6]) | |
Out[75]: 6 | |
random.choice([1, 2, [1,2,3], 3, 4, 5, 6]) | |
Out[76]: 5 | |
random.choice([1, 2, [1,2,3], 3, 4, 5, 6, 'string']) | |
Out[77]: 1 | |
random.choice([1, 2, [1,2,3], 3, 4, 5, 6, 'string']) | |
Out[78]: [1, 2, 3] | |
random.choice([1, 2, [1,2,3], 3, 4, 5, 6, 'string']) | |
Out[79]: 'string' | |
random.choice('string') | |
Out[80]: 'n' | |
random.choice('string') | |
Out[81]: 's' | |
random.choice((1, 2, 3)) | |
Out[82]: 3 | |
random.choice((1, 2, 3)) | |
Out[83]: 1 | |
# randrange(start, stop=None, step=1, _int=int): | |
# Choose a random item from range(start, stop[, step]) | |
# default range step is 1 | |
random.randrange(2) # from 0 -> 2, except 2 | |
Out[84]: 0 | |
random.randrange(2) # from 0 -> 2, except 2 | |
Out[85]: 1 | |
random.randrange(2, 5) # from 0 -> 5 , except 5, default step is 1 | |
Out[86]: 3 | |
random.randrange(2, 5) # from 0 -> 5 , except 5, default step is 1 | |
Out[87]: 4 | |
random.randrange(2, 5, 2) # from 0 -> 5 , except 5, step is 2 | |
Out[88]: 2 | |
random.randrange(2, 5, 2) # from 0 -> 5 , except 5, step is 2 | |
Out[89]: 4 | |
# random(): x in the interval [0, 1) | |
random.random() | |
Out[90]: 0.8305635327570792 | |
random.random() | |
Out[91]: 0.48515494046308605 | |
# uniform(x,y): r | x <= r < y | |
random.uniform(5, 10) | |
Out[92]: 8.943616755677565 | |
random.uniform(5, 10) | |
Out[93]: 5.469297933871174 | |
random.uniform(5, -10) | |
Out[94]: 4.574787852169905 | |
random.uniform(-5, -10) | |
Out[95]: -9.178825519599348 | |
########## |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment