Created
August 22, 2016 10:55
-
-
Save pinpox/ef0b203b138e9cfc10b88e6fd535d9b6 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
\documentclass[10pt,landscape,fleqn]{article} | |
\usepackage{multicol} | |
\usepackage{calc} | |
\usepackage{ifthen} | |
\usepackage[landscape]{geometry} | |
\usepackage{amsmath,amsthm,amsfonts,amssymb} | |
\usepackage{color,graphicx,overpic} | |
\usepackage{hyperref} | |
\usepackage[fleqn]{mathtools} | |
\usepackage[utf8]{inputenc} | |
\usepackage{framed} | |
%\pdfinfo{ | |
%/Title (example.pdf) | |
%/Creator (TeX) | |
%/Producer (pdfTeX 1.40.0) | |
%/Author (Seamus) | |
%/Subject (Example) | |
%/Keywords (pdflatex, latex,pdftex,tex)} | |
% This sets page margins to .5 inch if using letter paper, and to 1cm | |
% if using A4 paper. (This probably isn't strictly necessary.) | |
% If using another size paper, use default 1cm margins. | |
\ifthenelse{\lengthtest{\paperwidth = 11in}} | |
{\geometry{top=.5in,left=.5in,right=.5in,bottom=.5in}} | |
{\ifthenelse{\lengthtest{\paperwidth = 297mm}} | |
{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm}} | |
{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm}} | |
} | |
% Turn off header and footer | |
\pagestyle{empty} | |
% Redefine section commands to use less space | |
\makeatletter | |
\renewcommand{\section}{\@startsection{section}{1}{0mm}% | |
{-1ex plus -.5ex minus -.2ex}% | |
{0.5ex plus .2ex}%x | |
{\normalfont\large\bfseries}} | |
\renewcommand{\subsection}{\@startsection{subsection}{2}{0mm}% | |
{-1explus -.5ex minus -.2ex}% | |
{0.5ex plus .2ex}% | |
{\normalfont\normalsize\bfseries}} | |
\renewcommand{\subsubsection}{\@startsection{subsubsection}{3}{0mm}% | |
{-1ex plus -.5ex minus -.2ex}% | |
{1ex plus .2ex}% | |
{\normalfont\footnotesize\bfseries}} | |
\makeatother | |
% Define BibTeX command | |
\def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em | |
T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}} | |
% Don't print section numbers | |
\setcounter{secnumdepth}{0} | |
\setlength{\parindent}{0pt} | |
\setlength{\parskip}{0pt plus 0.5ex} | |
%My Environments | |
\newtheorem{example}[section]{Example} | |
% ----------------------------------------------------------------------- | |
\begin{document} | |
\raggedright | |
\footnotesize | |
\begin{center} | |
\Large{\underline{Phototechnik 2}} \\ | |
\end{center} | |
\begin{multicols*}{3} | |
\nonumber | |
\setlength{\premulticols}{1pt} | |
\setlength{\postmulticols}{1pt} | |
\setlength{\multicolsep}{1pt} | |
\setlength{\columnsep}{2pt} | |
\section{Beleuchtungsstaerke} | |
\label{sec:beleuchtungsstaerke} | |
\begin{framed} | |
Die Beleuchtungsstarke oder Lichtstromdichte beschreibt den flaechenbezogenen Lichtstrom, der auf ein beleuchtetes Objekt trifft. Ihr steht gegenüber die Lichtstaerke, die den raumwinkelbezogenen Lichtstrom einer Lichtquelle beschreibt. | |
\end{framed} | |
\begin{align} | |
&E=\frac{I}{d^2}*\Omega_0 \\ | |
&E=L * \pi *\Omega_0 && \text{fuer $d=0$} \\ | |
&E=\frac{I}{d^2}*\Omega_0*\cos{\alpha} \text{[lx]} \\ | |
&E= \frac{\Phi}{A_e} = L* \Omega_s\\ | |
&E_{grau} = E_{weiss}- P_{grau}\\ | |
&E = L*\pi*\Omega_0(\sin^2(\alpha_A)- \sin^2(\alpha_I)) && \text{Ring}\\ | |
&E = L*\pi*\Omega_0\sin^2\alpha && \text{Kreis} \\ | |
&E= L * \Omega_1 = \frac{A}{d^2} * L * \Omega_0 = L * \frac{\pi * D^2}{4 * d^2}* \Omega_0 && \text{Flaeche} | |
\end{align} | |
\subsubsection{Am Strahler} | |
\label{ssub:am_strahler} | |
\begin{align} | |
E_{max} &= L * \pi * \Omega_0 | |
\end{align} | |
\subsubsection{Scanner} | |
\label{ssub:Scanner} | |
\begin{align} | |
E &= \frac{L_{Obj} * \pi}{4 * k_{eff}^2} * \Omega_0 \\ | |
E_{\alpha} &= \frac{L_{Obj} * \pi}{4 * k_{eff}^2} * \Omega_0 *\cos\alpha\\ | |
\end{align} | |
\subsubsection{Leinwand} | |
\label{ssub:leinwand} | |
\begin{align} | |
E&= \frac{L_0 * \pi }{P_{LW}} * \Omega_0\\ | |
E_{LW} &= \frac{\Phi_{ges}}{A_{LW}} | |
\end{align} | |
\columnbreak | |
\section{Leuchtdichte} | |
\label{sec:leuchtdichte} | |
\begin{framed} | |
Reprasendtiert ein Strahlungsmas fuer die Flaechenhelligkeit $L = \frac{I}{A * \cos \epsilon}$ und beruecksichtigt im Gegensatz zur Starahldichte noch die menschliche Hellempfindlichkeit. | |
\end{framed} | |
\begin{align} | |
L &= \frac{I}{A} \left[\frac{cd}{m^2}\right] \\ | |
L &= \frac{E*d^2}{A_1 * \Omega_0} \\ | |
L &= \frac{E*\rho_{diff}}{\pi* \Omega_0} | |
\end{align} | |
\begin{framed} | |
Bei gerichteter Spiegelung kann Spiegelbild fuer die Kamera unsichbar sein, dann ist $L=0$ | |
\end{framed} | |
\subsubsection{Durchmesser berechnen} | |
\label{ssub:Durchmesser_berechnen} | |
\begin{align} | |
L &= \frac{I}{A_{min}} = \frac{I}{\pi * \frac{D_{min}^2}{4}} \\ | |
\Rightarrow D_{min} &= \sqrt{\frac{4I}{\pi * L}} | |
\end{align} | |
\section{Lichtstrom} | |
\label{sec:lichtstrom} | |
\begin{align} | |
\Phi_{ges} &= E * A = \frac{L*\pi*\Omega_0}{\rho} * A \\ | |
I &= \frac{\Phi}{\Omega} = \frac{\Phi}{4\pi\Omega_0} && \text{Lichtstaerke} | |
\end{align} | |
\section{Im deutlichen Gesichtsfeld} | |
\label{sec:im_deutlichen_gesichtsfeld} | |
\begin{align} | |
\beta' &= \frac{-h_{KB}}{h} \\ | |
\beta ' &= \frac{f'}{f'+a} \\ | |
a &= f'(\frac{1}{\beta'}-1) \\ | |
k &= \frac{-t_s * \beta '}{2*u'*(\frac{1}{\beta'}-1)} \\ | |
t_s &= - \frac{2u'k}{\beta'}(\frac{1}{\beta'}-1) \\ | |
\end{align} | |
\section{Belichtung} | |
\label{sec:belichtung} | |
\begin{align} | |
22 DIN &= 100 ASA\\ | |
24 DIN &= 200 ASA\\ | |
27 DIN &= 400 ASA\\ | |
+3 DIN &= 2*ASA\\ | |
t_{normal} &= \frac{t_{mess}}{2^{\Delta B} * l_{ref}} | |
&& \text{mit $l_{ref} = 0,18$} \\ | |
A_{max} &= 2^{n_{bit}} -1 \\ | |
H_m &= E *t = 0.65 * \frac{L_{Obj}}{k^2 / t} * \Omega_0 \\ | |
&= 0.65 * \frac{L_{Obj}}{2^B} * \Omega_0\\ | |
H_{sat} &= \frac{A_{max}}{A_{mittel}}\\ | |
S_{ISO\_Sat} &= \frac{78lx}{H_{Sat}} | |
\end{align} | |
\subsubsection{Objektmessung} | |
\label{ssub:Objektmessung} | |
\begin{align} | |
t &= \frac{k^2 * C_R}{L * 10^{\frac{S_{DIN}}{10}}} \\ | |
C_R &= \frac{L * 10\frac{S_{DIN}}{10}}{2^B} \\ | |
2^B &= \frac{k^2}{t} = \frac{L_{Obj} * 10 ^{\frac{S_{DIN}}{10}}}{C_R} * 2^{\Delta B_{Anzeige}} \\ | |
L_{Obj} &= \frac{C_R * (\frac{k^2}{t})}{\frac{S_{DIN}}{10}} * 2^{\Delta B_{Anzeige}} \\ | |
\end{align} | |
\subsubsection{Lichtmessung} | |
\label{ssub:Lichtmessung} | |
\begin{align} | |
t &= \frac{k^2 * C_L}{E * 10^{\frac{S_{DIN}}{10}}} \\ | |
C_L &= \frac{E * 10\frac{S_{DIN}}{10}}{2^B}\\ | |
t &=t_0 *VF *2^{-\Delta B} \\ | |
2^B &=\frac{E * 10^{\frac{S_{DIN}}{10}}}{C_L} \\ | |
\Rightarrow E &= \frac{2^B * C_L}{10^{\frac{S_{DIN}}{10}}} | |
\end{align} | |
\subsubsection{Verlaengerungsfaktor} | |
\label{ssub:Verlaengerungsfaktor} | |
\begin{align} | |
VF &= (1 - \beta ') ^2 \\ | |
\beta ' &= \frac{f'}{a+ f'} | |
\end{align} | |
\section{Optische Abbildung} | |
\label{sec:optische_abbildung} | |
\begin{align} | |
f'_{ges} &= - \frac{1}{a_{fern}} + \frac{1}{a_{min}} \\ | |
f'_{ges} &= \frac{f_1' * f'_2}{f'_1 + f'_2 -d} \\ | |
\beta' &= \frac{\gamma'}{\gamma} && \text{$\gamma'$: Pixelabstand Sensor} \\ | |
a &= f'\left(\frac{1}{\beta'}-1\right) && \text{a Objektweite} \\ | |
a' &= a * \beta && \text{a': Bildweite} \\ | |
VF &= \left(1-\beta'\right)^2 && \text{Verlaengerungsfaktor}\\ | |
k_{eff} &= K_0\left( 1-\beta'\right) && \text{effektive Blende} | |
\end{align} | |
\subsubsection{Brennweite} | |
\label{ssub:Brennweite} | |
\begin{align} | |
f' &= \frac{a'}{1-\beta} = \frac{a'}{1-\frac{\gamma'}{\gamma}} | |
\end{align} | |
\subsubsection{Austrittspuppile} | |
\label{ssub:Austrittspuppile} | |
\begin{align} | |
k &= \frac{f'}{D_{EP}} \Rightarrow D_{AP} = D_{EP} = \frac{f'}{k} = f' * \text{OeV} && \text{Durchmesser} \\ | |
\end{align} | |
\subsubsection{Aufloesungsvermoegen} | |
\label{ssub:Aufloesungsvermoegen} | |
\begin{align} | |
AV &= \frac{1500}{k_{eff}} && \text{Bildebene}\\ | |
AV_{Sensor} &= \frac{1}{\text{Pixelabstand}} \\ | |
\beta' &= -\left(\frac{1500}{k_0 * AV_{Sensor}}-1 \right) && \text{$AV_{Sensor}$ genutzt} \\ | |
t_s &= - \frac{4*k}{\beta' * AV_{Sensor}}\left( \frac{1}{\beta'}-1\right) && \text{Schaerfentiefe} | |
\end{align} | |
\subsubsection{Hauptebenen} | |
\label{ssub:Hauptebenen} | |
\begin{align} | |
H_2H'_{ges} &= f'_{ges} && \text{fuer $a = \infty$} \\ | |
\end{align} | |
\subsubsection{Dioptrien} | |
\label{ssub:Dioptrien} | |
\begin{align} | |
D &= \frac{1}{f'}\\ | |
\frac{1}{f_{korr}} & = \frac{1}{a'_{nah}} - \frac{1}{a_{nah}} && \text{nach korrektur} \\ | |
\Rightarrow a'_{nah} &= \frac{a_{nah} * f'_{korr}}{a_{nah} + f'_{korr}} | |
\end{align} | |
\section{Konversionsfilter $\mu rd$ } | |
\label{sec:konversionsfilter} | |
\begin{align} | |
&M = \frac{10^6}{T} \\ | |
&M_{Sensor} = M_{Licht} + M_{Filter} \\ | |
&\Delta M < 0 && \text{Blau-Filter} \\ | |
&\Delta M > 0 && \text{Orange-Gelb-Filter} \\ | |
&\tau(\lambda) \sim e^{\frac{-c_2}{\lambda}(\frac{1}{T_{Sensor}}-\frac{1}{T_{Licht}})} \\ | |
&\frac{\tau(\lambda_{g})}{\tau(\lambda_{b})} = e^{-c_2(\frac{1}{\lambda_g}- \frac{1}{\lambda_b})(\frac{1}{T_s}- \frac{1}{T_L})} && c_2 = 1.4388\times10^{-2}[mk] \\ | |
&\frac{\tau(\lambda_{1})}{\tau(\lambda_{2})} = e^{-c_2(\frac{1}{T_2}- \frac{1}{T_1})(\frac{1}{\lambda_1}- \frac{1}{\lambda_2})} \\ | |
&= e ^{c_2 * \frac{M_{Filter}}{10^6}*\left(\frac{1}{\lambda_1}-\frac{1}{\lambda_2}\right)} \\ | |
&\Rightarrow M_{Filter} = \frac{\log \frac{\tau(\lambda_1)}{\tau(\lambda_2)}*10^6}{c_2 * \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right)} \\ | |
&\frac{V_g}{V_r} = \frac{\tau_g}{\tau_r} && \text{Verstaerkungsfaktor} \\ | |
&Tf_{Lampe} = \frac{1}{\frac{1}{Tf_{Licht}}+ \frac{M_{dimm}}{10^6}} | |
\end{align} | |
\section{Lampengesetze} | |
\label{sec:lampengesetze} | |
\begin{align} | |
\frac{X}{X_N}&=\left(\frac{U}{U_N}\right)^{\alpha x} && \text{mit $X \sim \Phi \sim P \sim \eta \sim T \sim z$} \\ | |
\alpha x &= \frac{\log\left(\frac{X}{X_N}\right)}{\log\left(\frac{U}{U_N}\right)} && \text{Lampenkoeffizient} | |
\end{align} | |
\subsubsection{Strom halbieren} | |
\label{ssub:strom_halbieren} | |
\begin{align} | |
\frac{E}{E_N} &\doteq \frac{1}{2} = \left(\frac{U}{U_N}\right)^{\alpha_{\Phi}} && \text{soll gelten}\\ | |
\Rightarrow U&=U_N*\left(\frac{1}{2}\right)^{\frac{1}{\alpha_\Phi}} \\ | |
\frac{\eta}{\eta_N}&= \frac{\frac{\Phi}{p}}{\frac{\Phi_N}{P_N}} = \frac{\Phi}{\Phi_N} * \left(\frac{P}{P_N}\right)^{-1} \\ | |
\Rightarrow &=\left(\frac{U}{U_N}\right)^{(\alpha_\Phi - \alpha_P)} && \text{Lichtausbeute} | |
\end{align} | |
\subsubsection{Lampenkoeffizienten} | |
\label{ssub:Lampenkoeffizienten} | |
\begin{align} | |
\frac{E}{E_N} &= \frac{\Phi}{\Phi_N} = \left(\frac{U}{U_N}\right)^{\alpha_\Phi} \\ | |
\Rightarrow \alpha_\Phi &= \frac{\log\left(\frac{E}{E_N}\right)}{\log\left(\frac{U}{U_N}\right)} \\ | |
\frac{U*I}{U_N*I_N} &= \frac{P}{P_N} = \left(\frac{U}{U_M}\right)^{\alpha_P} \\ | |
\Rightarrow \alpha_P &= \frac{\log\left(\frac{U*E}{U_N*I_N}\right)}{\log\left(\frac{U}{U_N}\right)} | |
\end{align} | |
\section{LED} | |
\label{sec:led} | |
\[ | |
I_v \sim I_D \sim I_e | |
\] | |
\section{Snellius} | |
\label{sec:snellius} | |
\begin{align} | |
&n_1 * \sin\alpha = n_2 * \sin\beta && \text{n: Brechungsindex} \\ | |
& n_\alpha> n_1 && \text{zum Lot}\\ | |
& n_\alpha> n_1 && \text{vom Lot} | |
\end{align} | |
\section{Reflexion} | |
\label{sec:reflexion} | |
\begin{framed} | |
Reflektierte Anteile sind vorzugsweise senkrecht zur Einfallsebene polarisiert. | |
\end{framed} | |
\subsubsection{Totalreflexion} | |
\label{ssub:totalreflexion} | |
\begin{align} | |
\alpha_{grenz} = \arcsin\left(\frac{n_2}{n_1}\right) | |
\end{align} | |
\subsubsection{Brewster Winkel} | |
\label{ssub:brewster_winkel} | |
\begin{align} | |
\tan\left(\alpha_B\right)&= \frac{n_1}{n_2} \\ | |
\alpha_B &= \arctan\left(\frac{n_2}{n_1}\right) | |
\end{align} | |
\subsubsection{Reflexionsgrade} | |
\label{ssub:reflexionsgrade} | |
\begin{align} | |
\beta &= sin^{-1}\left(\frac{\sin\alpha}{n}\right)\\ | |
\rho_{s2} &= \frac{\sin^2\left(\alpha-\beta\right)}{\sin^2\left(\alpha+\beta\right)} && \text{senkrecht}\\ | |
\rho_{p2} &= \frac{\tan^2\left(\alpha-\beta\right)}{\tan^2\left(\alpha+\beta\right)} && \text{parallel}\\ | |
\rho_{unpol} &= \frac{\rho_{s}+ \rho_p }{2} | |
\end{align} | |
\begin{framed} | |
Bei zweiter Greznflaeche (z.B. Austritt Glas) Reflexionsgrade vertauschen. | |
\end{framed} | |
\subsubsection{Verhaeltnis Reflexionsheligkeit} | |
\label{ssub:verhaeltnis_reflexionsheligkeit} | |
\begin{align} | |
\frac{L_s}{L_p} = \frac{l_s}{l_p} = \frac{\frac{\sin^2(\alpha-\beta)}{\sin^2(\alpha+\beta}}{\frac{\tan^2(\alpha-\beta)}{\tan^2(\alpha+\beta}} = \frac{\cos^2(\alpha-\beta)}{\cos^2(\alpha+\beta)} | |
\end{align} | |
\begin{align} | |
L_s &= L_{LQ,S} * l_s = \frac{1}{2}L_{LQ} * l_s && \text{$L_{LQ}$ unpolarisiert} \\ | |
L_p &= \frac{1}{2}L_{LQ} * l_p | |
\end{align} | |
\subsubsection{Helligkeit Reflexion} | |
\label{ssub:helligkeit_reflexion} | |
\begin{align} | |
L &= L * \rho_{ger} && \text{gerichtet, Spiegelbild} \\ | |
L &= \frac{E*\rho_{diff}}{\pi * \Omega_0} && \text{diffus, Sekundaerstrahler} | |
\end{align} | |
\section{OECF} | |
\label{sec:oecf} | |
\begin{align} | |
\frac{Y_1}{Y_2} &= \left(\frac{L_1}{L_2}\right)^{\frac{1}{\gamma}} \\ | |
\gamma &= \frac{\log(\frac{L_1}{L_2})}{\log(\frac{Y_1}{Y_2})} \\ | |
\frac{L}{L_{grau}} &= \frac{L}{L_{sat}} * \frac{L_{sat}}{L_{weiss}} * \frac{L_{weiss}}{L_{grau}} = (\frac{Y}{255})^\gamma * \sqrt{2} * \frac{1}{0,18}\\ | |
S_{ASA} &= S_{100} * \frac{L}{L{grau}} | |
\end{align} | |
\section{CCD Sensor} | |
\label{sec:ccd_sensor} | |
\begin{align} | |
S_{rel}(\lambda) &= \frac{\lambda}{\lambda_0} && \text{rel spek Empf., $\lambda_0$ gegeben} | |
\end{align} | |
\subsubsection{Transmissionsverhaeltnisse bestimmen} | |
\label{ssub:Transmissionsverhaeltnisse_bestimmen} | |
\begin{align} | |
\frac{\tau_r}{\tau_g} &= \frac{S_{rel}(\lambda_g) * Le_\lambda(\lambda_g, T_f)}{S_{rel}(\lambda_r) * Le_\lambda(\lambda_r, T_f)} \\ | |
&= \frac{\lambda_r^4}{\lambda_g^4}*e^{\frac{c_2}{T}\left(\frac{1}{\lambda_r}-\frac{1}{\lambda_g}\right)} && \text{$\frac{\tau_r}{\tau_b}$ analog} | |
\end{align} | |
\section{Lichtstaerke} | |
\label{sec:lichtstaerke} | |
\section{Kirhoff} | |
\label{sec:kirhoff} | |
\section{Temperatur} | |
\label{sec:temperatur} | |
\begin{align} | |
\frac{Le_{\lambda1}}{Le_{\lambda2}} &= \left(\frac{\lambda_2}{\lambda_1}\right)^5 * \frac{e^{\frac{c_2}{\lambda_2*T}}}{e^{\frac{c_2}{\lambda_1*T}}} = | |
\left(\frac{\lambda_2}{\lambda_1}\right)^5 * e^{\frac{c_2}{T} \left(\frac{1}{\lambda_2}-\frac{1}{\lambda1}\right)} \\ | |
\Rightarrow T&= \frac{c_2*\left(\frac{1}{\lambda_2}-\frac{1}{\lambda_1}\right)} | |
{\log\left(\frac{Le_{\lambda1}}{Le_{\lambda2}}\right)+5\log\left(\frac{\lambda_1}{\lambda_2}\right)} && \text{$c_2 = 1,4388*10^{-2}mk$}\\ | |
\Rightarrow T_2 &= \left(\frac{\log \left(\text{faktor}\right)}{c_2 \left(\frac{1}{\lambda_r}-\frac{1}{\lambda_b}\right) }+ \frac{1}{T_1} \right)^{-1} && \text{Aenderung Verhaeltnis spektr. Strahldichte (z.B. Spannungsaenderung)} | |
\end{align} | |
\subsubsection{Bolzman} | |
\label{ssub:Bolzman} | |
\begin{align} | |
L &\sim \Phi \sim T^n\\ | |
\Phi &= U * I = P = P_{zu} = \Phi_e - \Phi_{abs} = (T_{su}^n - T_u^n) \\ | |
\Phi_{em} &= o *T^4 * A * \epsilon | |
\end{align} | |
\subsubsection{Wiensches Verscheibungsgesetz} | |
\label{ssub:Wiensches_Verscheibungsgesetz} | |
\begin{align} | |
\lambda_{max1} * T_{f1} &=\lambda_{max2}*T_{f2}\\ | |
\Rightarrow T_{f2} &= \frac{\lambda_{max1}}{\lambda_{max2}}* T_{f1} \\ | |
\lambda_{max} * T &= 2.898*10^{-3} && \text{[mk]} \\ | |
\Rightarrow T &= \frac{2.898*10^{-3}}{\lambda_{max}} | |
\end{align} | |
\section{Strahldichteverhaeltnis} | |
\label{sec:strahldichteverhaeltnis} | |
\section{Blende} | |
\label{sec:blende} | |
\begin{framed} | |
\textbf{foerderliche Blende}: kleinste Blendeneinstellung, bei der Beugungsunschaerfae gerade noch nicht sichtbar ist | |
\end{framed} | |
\begin{align} | |
W_{min} &= 1' = \frac{2\pi}{360 * 60} = \frac{u_{repro/2}}{d_B}\\ | |
\Rightarrow u_{repro} &= d_B * \frac{4\pi}{360*60} && \text{Zerstreuungskreis}\\ | |
AV_{repro} &= \frac{2}{u_{repro}} && \text{Aufloesungsvermoegen} \\ | |
AV_{Sensor} &= \frac{1500}{k_{eff}}[mm^{-1}] \doteq AV_{repro} * \beta_{repro} \\ | |
\Rightarrow k_{eff} &= \frac{1500}{AV_{repro} * \beta_{repro}} && \text{$\beta$: Abb.-massstab} \\ | |
a_h &= \frac{a*h}{h-(a+f')} \\ | |
\Rightarrow h&= \frac{a+f '}{1-\frac{a}{a_h}} \\ | |
u' &= -\frac{f'^2}{h*k} = \frac{u_{repro}}{\beta_{repro}} = 2'd_B*\beta_{repro}&& \text{Unschaerfedurchmesser} \\ | |
\beta_{repro} &= \frac{h_{sensor}}{h} | |
\end{align} | |
\end{multicols*} | |
\end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment