Last active
December 7, 2020 06:41
-
-
Save pinzhenx/8f62d5076bb04f0fd2108380b22dfbaa to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import pandas as pd | |
def profile(m, x, nwarm=10, nrun=300): | |
for _ in range(nwarm): | |
m(x) | |
with torch.autograd.profiler.profile(True) as prof: | |
for _ in range(nrun): | |
m(x) | |
return getattr(prof.key_averages()[0], 'cpu_time') / 1000 | |
S = [] | |
# PR #40610 (Disable special cases) | |
S += [ | |
[1, 1024, 14, 14, 2048, 1, 1, 2, 2, 0, 0, 1], | |
[1, 512, 28, 28, 512, 3, 3, 2, 2, 1, 1, 32], | |
[1, 256, 56, 56, 256, 3, 3, 2, 2, 1, 1, 32], | |
[1, 256, 56, 56, 256, 1, 1, 1, 1, 0, 0, 1], | |
[1, 128, 56, 56, 256, 1, 1, 1, 1, 0, 0, 1], | |
[1, 256, 56, 56, 512, 1, 1, 2, 2, 0, 0, 1], | |
[1, 256, 56, 56, 128, 1, 1, 1, 1, 0, 0, 1], | |
[1, 1024, 7, 7, 2048, 1, 1, 1, 1, 0, 0, 1], | |
[1, 2048, 7, 7, 1024, 1, 1, 1, 1, 0, 0, 1], | |
[1, 1024, 14, 14, 1024, 3, 3, 2, 2, 1, 1, 32], | |
[1, 1024, 14, 14, 512, 1, 1, 1, 1, 0, 0, 1], | |
[1, 256, 28, 28, 256, 3, 3, 1, 1, 1, 1, 32], | |
[1, 3, 224, 224, 64, 7, 7, 2, 2, 3, 3, 1], | |
[1, 128, 56, 56, 128, 3, 3, 1, 1, 1, 1, 32], | |
[1, 1024, 7, 7, 1024, 3, 3, 1, 1, 1, 1, 32], | |
[1, 512, 28, 28, 512, 1, 1, 1, 1, 0, 0, 1], | |
[1, 512, 28, 28, 256, 1, 1, 1, 1, 0, 0, 1], | |
[1, 256, 28, 28, 512, 1, 1, 1, 1, 0, 0, 1], | |
[1, 512, 28, 28, 1024, 1, 1, 2, 2, 0, 0, 1], | |
[1, 64, 56, 56, 128, 1, 1, 1, 1, 0, 0, 1], | |
[1, 64, 56, 56, 256, 1, 1, 1, 1, 0, 0, 1], | |
[1, 512, 14, 14, 512, 3, 3, 1, 1, 1, 1, 32], | |
[1, 512, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1], | |
[1, 1024, 14, 14, 1024, 1, 1, 1, 1, 0, 0, 1] | |
] | |
# Issue #35937 (2x slower) | |
S += [ | |
[1, 512, 4, 4, 512, 3, 3, 1, 1, 1, 1, 1] | |
] | |
# PR #46675 (fix heuristics) | |
S += [ | |
[25, 3, 48, 320, 64, 7, 7, 1, 1, 0, 0, 1], | |
[1, 3, 384, 288, 64, 7, 7, 1, 1, 0, 0, 1], | |
[1, 3, 16, 224, 224, 32, 1, 7, 7, 1, 1, 1, 0, 0, 0, 1], | |
[1, 3, 4, 112, 112, 64, 3, 7, 7, 1, 1, 1, 0, 0, 0, 1], | |
[1, 256, 8, 14, 14, 256, 3, 3, 3, 1, 1, 1, 0, 0, 0, 1] | |
] | |
df = pd.DataFrame(columns=['src', 'wei', 'str', 'pad', 'g', 'mkldnn', 'thnn', 'result']) | |
for P in S: | |
print(P) | |
if len(P) == 12: | |
N, C, H, W, M, kh, kw, str_h, str_w, pad_h, pad_w, g = P | |
xsize = [N, C, H, W] | |
ksize = [kh, kw] | |
strides = [str_h, str_w] | |
pads = [pad_h, pad_w] | |
conv = torch.nn.Conv2d | |
else: | |
N, C, D, H, W, M, kd, kh, kw, str_d, str_h, str_w, pad_d, pad_h, pad_w, g = P | |
xsize = [N, C, D, H, W] | |
ksize = [kd, kh, kw] | |
strides = [str_d, str_h, str_w] | |
pads = [pad_d, pad_h, pad_w] | |
conv = torch.nn.Conv3d | |
x = torch.rand(xsize) | |
m = conv(C, M, ksize, stride=strides, padding=pads, groups=g, bias=True) | |
print('src', xsize) | |
print('wei', [M, C] + ksize) | |
print('str', strides) | |
print('pad', pads) | |
print('g', g) | |
torch._C._set_mkldnn_enabled(True) | |
mkldnn_t = profile(m, x) | |
mkldnn_res = m(x) | |
print('MKLDNN time =', mkldnn_t) | |
torch._C._set_mkldnn_enabled(False) | |
thnn_t = profile(m, x) | |
thnn_res = m(x) | |
print('THNN time =', thnn_t) | |
if mkldnn_t > thnn_t: | |
print('\033[31mSLOW\033[0m\n') | |
result = 'slow' | |
else: | |
print('\033[32mFAST\033[0m\n') | |
result = 'fast' | |
assert torch.allclose(mkldnn_res, thnn_res, rtol=1e-5, atol=1e-5) | |
df.loc[len(df)] = [xsize, [M, C] + ksize, strides, pads, g, mkldnn_t, thnn_t, result] | |
print(df.to_string(index=False)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment