Created
December 7, 2012 19:22
-
-
Save piti118/4235751 to your computer and use it in GitHub Desktop.
quick and dirty unblind
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "quick_and_dirty" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "from root_numpy import *\nfrom glob import glob\ndatadir = '../dumpEvtShape/output/bestcandcut/'", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "onpeak_pat = datadir+'OnPeak_KStar_Run*.root'\ndata = root2rec(onpeak_pat)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "hist(data.BsublistMes[data.CPFlavor<0],bins=100,histtype='step');\nhist(data.BsublistMes[data.CPFlavor>0],bins=100,histtype='step');\nxlabel('mES(GeV)')", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "pyout", | |
"prompt_number": 13, | |
"text": "<matplotlib.text.Text at 0x2aaaac053210>" | |
}, | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEMCAYAAAAoB2Y1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX++PHXzLCLICiiAu6SEiDghhuRoiaaFWqmZmFm\n38o0tVtmy1Wz21Vvm1Zalmm/7iX3ylLrek2sDLfEFUksUQEXcGOTbeb8/jgyiCLrDAPM+/l4zKM5\ns5zznhO+5zOf8/m8PxpFURSEEEJYBa2lAxBCCFF7JOkLIYQVkaQvhBBWRJK+EEJYEUn6QghhRSTp\nCyGEFakw6Q8ZMoTg4GB8fX0ZM2YMOTk5XL58mUGDBhEYGMjgwYO5evWq8fXTpk3Dz8+PkJAQ4uPj\nzRq8EEKIqqkw6X/99dfEx8dz4sQJ9Ho9n3/+OXPmzCEiIoLDhw8zYMAA5syZA8CGDRtISkoiISGB\npUuXEh0dbe74hRBCVEGFSd/JyQmAwsJCCgoKaNWqFVu2bGHcuHEAjB07ls2bNwOwefNm4+OhoaFk\nZmaSmppqrtiFEEJUkU1lXhQZGcnu3bsZMGAAI0eOZNy4cXh5eQHg5eVFSkoKAKmpqcbHAby9vUlJ\nSSn1mEajMWX8QghhNUxRQKFSF3K3bNlCWloa2dnZrFq1qsYHVRRFborCnDlzLB5DXbnJuZBzIeei\n/PNgKpUevePg4MADDzzAnj17jC14UFv33t7eAKUev/U5IYQQlldu0s/MzOTSpUuA2qe/detWAgIC\niIyMJCYmBoCYmBgiIyMBtRto9erVAMTFxdG4ceNSXTtCCCEsq9w+/StXrhAVFUVRURHXr19n6NCh\nPP3001y9epUxY8YQExNDixYtWLt2LQAjR45kx44d+Pn54eDgwMqVK2vlQ9RX4eHhlg6hzpBzUULO\nRQk5F6rw8HDmzZtnkn1pFEWp1dLKGo2GWj6kEELUe6bKnTIjVwghrIgkfSGEsCKS9IUQwopI0hdC\nCCsiSV8IIayIJH0hhLAikvSFEMKKSNIXQggrIklfCCGsiCR9IYSwIpL0hRDCikjSF0IIKyJJXwgh\nrIgkfSGEsCKS9IUQwopUamF0IYSoDQfPH+TPy38at3t49aC1a2sURWFL0hbyivIA0Gl1DO04FHsb\ne0uFWm/JIipCiDoj9LNQHG0dcXd0J+lSEhHtI3h3yLucyzpHu8XtGOY7DIDY5Fi+feRb+rXuZ+GI\na4+pcqe09IUQdYaCwoKBC+jl3Yv34t7jTOYZ4+Puju5seHgDAP1X9pfGYzVJn74QQlgRaekLIWrV\n3tS9fHrgU+O2r7svL/Z90YIRWRdp6QshatVPp37i7LWz9GzVk/ZN2vPRvo/u+NrM/EzOXDtDamZq\nLUbYsElLXwhR64JaBDG522SSrybzye+flPmaNk3a8N7u99j25zYAAjwDajPEBkuSvhCiTorqEkVU\nlyhLh9HgSPeOEEJYEUn6QghhRaR7RwhhMRo0pOemM3bDWABOXj6JRqOxcFQNmyR9IYTZXcy5SEZu\nBgAXci5gr1PLJ/i4+vDlQ1+SX5QPQFTnKLp6drVYnNZAkr4QwuyGxwwnPTcdRxtHAF7q+xIAWo1W\nLtbWsnL79M+fP094eDgBAQH4+voyd+5cAKKjo+nUqRPBwcEEBwdz9OhRABRFYdq0afj5+RESEkJ8\nfLzZP4AQou4rNBSy8eGNJExJIGFKAtFB0ZYOyWqV29K3sbHhgw8+ICAggNzcXEJCQoiIiECj0bBi\nxQrCwsJKvX7jxo0kJSWRkJDA7t27iY6O5tChQ2b9AEIIISqv3JZ+s2bNCAhQJ0Q4OTnh7+/PuXPn\nAMosdrRlyxbGjRsHQGhoKJmZmaSmykw6IYSoKyrdp5+cnMzu3btZvnw5W7ZsYcqUKRgMBgYNGsSi\nRYuwt7cnJSUFLy8v43u8vb1vewwwdhMBhIeHEx4eXuMPIoSwHlqNlln/m0VTp6YATAicwMN3P2zh\nqEwrNjaW2NhYk++3Ukk/NzeXhx9+mCVLluDu7s7ChQtp3rw5+fn5PP7447z55pvMnz+/0ge9OekL\nIURVLRu2zLjYyuakzew8vbPBJf1bG8Tz5s0zyX4rTPp6vZ4xY8bwyCOPEBWlXmVv3rw5APb29kyY\nMIElS5YAJS37YqmpqXh7e5skUCGEKObn4Yefhx8AZ66dISEjwcIR1R8VzsidPHky7dq1Y+bMmcbH\nLl26BIDBYGDTpk34+aknPzIyktWrVwMQFxdH48aNb+vaEUIIYTnltvR37drFqlWrCAwMJDg4GIA3\n3niDzz//nNOnT5OZmUlwcDCLFi0CYOTIkezYsQM/Pz8cHBxYuXKl+T+BEKLBy8+H/ftBUdTbqFFw\n+bL6nKE7DJ9o2fjqk3KTft++fTEYDLc9fv/999/xPR9++GHNoxJCiJts2gTPPAOdO6vboaGwfr16\nv8cUyM+zXGz1jczIFULUeXo9RETAjd7jUqRUT9VIlU0hhLAikvSFEMKKSPeOEKJOevtt2LhRvZ+R\nAT16VO59hfpCDIp6LVKj0WCnszNThPWTJH0hhMXk5MAvv6gjcgDc3NSLtAC//QbDh0Px/KT27Sve\nX1Z+Fh7/8kBB3WGRoYjfnviNXt69TB98PSVJXwhRqzZtgl9/Ve8nJqpDMbt2BYMBYmPV4ZnFOneG\nPn0qv+98fT7Ods5kvKTW7o/4fxFkFWSZLvgGQJK+EKJWffaZ2qK/+27o1w9efllN7IWF4ORk6ega\nPkn6QohaN3IkjBhh6Sisk4zeEUIIKyJJXwghrIh07wgh6r3zBSdZd2wdmfmZlg6lzpOkL4So19yv\n9yBXG8vahLUAsv5uBSTpCyHqDEWBtDT1/vXrlXuP+/WePO2zjtGjzRdXQyJJXwhRJ2i14OsL3bur\n2xoNtGxp2ZgaIkn6Qog6QaeDBFkAy+wk6Qsh6r2LFyE5Wb3v4QGNGlk0nDpNhmwKIeq1zp3hX/9S\na/T06AFPPWXpiOo2SfpCiHpt/ny1lZ+cDMuWla7dI24nSV8IIayIJH0hhLAikvSFEMKKSNIXQggr\nIklfCCGsiCR9IYSwIpL0hRDCikjSF0IIKyJlGIQQJnfgALz+esn2mSDLxSJKk6QvhDC5I0cgLw9m\nzlRnyG79n6UjEsXK7d45f/484eHhBAQE4Ovry9y5cwG4fPkygwYNIjAwkMGDB3P16lXje6ZNm4af\nnx8hISHEx8ebNXghRN3l7Q3DhsHQoZaORNys3KRvY2PDBx98wJEjRzh48CCrV6/m119/Zc6cOURE\nRHD48GEGDBjAnDlzANiwYQNJSUkkJCSwdOlSoqOja+MzCCGEqKRyk36zZs0ICAgAwMnJCX9/f86d\nO8eWLVsYN24cAGPHjmXz5s0AbN682fh4aGgomZmZpKammjN+IYQQVVDpPv3k5GR2797N8uXLSUlJ\nwcvLCwAvLy9SUlIASE1NNT4O4O3tXeq1xYq7iQDCw8MJDw+vwUcQQoiGJzY2ltjYWJPvt1JJPzc3\nl9GjR7NkyRLc3d1rfNCbk74QwgoooDeAXq+ugysqdmuDeN68eSbZb4Xj9PV6PWPGjGHs2LFERUUB\nJS14UFv33t7etz1+63NCCOtkY6Ouf9uzJ9jZwQ8/gJubpaOyXhUm/cmTJ9OuXTtmzpxpfCwyMpKY\nmBgAYmJiiIyMND6+evVqAOLi4mjcuPFtXTtCCOtiawsBgfD7frWlX1gI/ftbOirrVW73zq5du1i1\nahWBgYEEBwcDMH/+fObNm8eYMWOIiYmhRYsWrF27FoCRI0eyY8cO/Pz8cHBwYOXKleb/BEKIOklP\nPtcLDQAYFIPF4sgvyud64XUA7G3s0WqsuxBBuUm/b9++GAxl/8/atm1bmY9/+OGHNY9KCFGvXS5K\nIaZdWzYssgXAVmuLq4NrrcfRsnFLRq0bBUCRoYhpvabxzuB3aj2OukRm5AohTC5fyaFxYQeuzf3D\nonF8+dCXfPnQlwB8+vun7E3ba9F46gLr/p0jhBBWRlr6QogGKzYWrlxR78dfhsImFg2nTpCkL4Ro\nsCIiYPhw0GggNhOC77d0RJYnSV8IYRKvvQbffKPeTzeAJsqy8YA6EWzDBtDpoOfTgEwMk6QvhDCN\nAwfg2WchLAxOZcHMfZaOSJRFkr4QwmTatgV/f7DNAO3vlo5GlEVG7wghhBWRpC+EEFZEkr4QQlgR\n6dMXQphEatN/M/HQaziegEJDIU0dm1o6JFEGSfpCCJO47vAXvZqMYMlYtSJvEweZCVUXSdIXQpiM\ns00T2jZpa+kwRDmkT18IIayIJH0hhLAikvSFEMKKSJ++EKLa0rLSyMjNACDf9jzQzKLxODnBpk3Q\n9MbAITs7tdhasWzDJQ5fOAyAq70rbZq0sUCUliVJXwhRbUP/M5TrhddxsHHgSmPwcXjFsvEMhfPn\n1UJrAPb26qLsAM6FHTlZcJJHNz6KXtFzLuscl2ddtlywFiJJXwhRbYX6Qr555Bv8PPyIjIR77rFs\nPBoNuLuX/Zxn7r1MbnuYsWMhKz+LVu+2qt3g6gjp0xdCCCsiSV8IIayIJH0hhLAikvSFEMKKyIVc\nIYRVyi/K582f3wRAq9HyVLenaOZk2SGntUFa+kIIq+Ns58wb975BXlEeeUV5rIhfwd7UvZYOq1ZI\nS18IYXU0Gg0v93vZuH3g3AELRlO7pKUvhBBWRJK+EKJaiorgzBl49FHo1w/i4kCns3RUoiLlJv0n\nnngCT09P2rVrZ3wsOjqaTp06ERwcTHBwMEePHgVAURSmTZuGn58fISEhxMfHmzdyIYRF5eVBbi7M\nnAkLFsDmzTBggKWjEhUpt09/4sSJTJ06laioKONjGo2GFStWEBYWVuq1GzduJCkpiYSEBHbv3k10\ndDSHDh0yT9RCiDojJAT8PCwdReV89RUUp6X+/WHYMMvGYwnltvT79++Pm5vbbY8rxdWMbrJlyxbG\njRsHQGhoKJmZmaSmppooTCGEqJkpU6BPH2jSBFJT4dNPLR2RZVRr9M6UKVMwGAwMGjSIRYsWYW9v\nT0pKCl5eXsbXeHt73/ZYsblz5xrvh4eHEx4eXp0whBCi0vr1U28A33wDq1ZZNJwKxcbGEhsba/L9\nVjnpL1y4kObNm5Ofn8/jjz/Om2++yfz586u0j5uTvhBCiNvd2iCeN2+eSfZb5dE7zZs3B8De3p4J\nEyawd686oaG4ZV8sNTUVb29vkwQphDC/zPxMrly/wpXrV8jKz7J0OMJMqpz0L126BIDBYGDTpk34\n+fkBEBkZyerVqwGIi4ujcePGZXbtCCHqnoT0BNwXutN+SXvaL2mP20I3UjPlmlxDVG73zujRo9m1\naxcZGRn4+Pgwc+ZMfv75Z06fPk1mZibBwcEsWrQIgJEjR7Jjxw78/PxwcHBg5cqVtfIBhBA1l1uY\nS1CLIPY/tR+Ajks6cr3ouoWjMq9Dh+C559T7J5qC0sOy8dSWcpP+unXrbntsxowZd3z9hx9+WPOI\nhBDCzMLC4G9/K1lW8aPdoNdbNqbaIrV3hBBWx91dHcJZbNoey8VS2yTpCyEq7VreNWZvn02hoZDC\nQlCc0ywdkqgiqb0jhCjXzJnQsaN68+93hv/8/i09W/Wke4ue2P30Pp3cO1k6RFEF0tIXQpTr6FF4\n9VW1bMGSNfDvXHcmd5tMdja8fAxspchavSItfSFEhby81JZ+06aWjkTUlLT0hRBVojfAyZOQk2Pp\nSER1SNIXQpRpzdE1NG/UnBRPuJA/GGhDq1aQlwj33ae+poeVjG1vSCTpCyFu80z3Z0i8lEjytWTO\nttjHT+kXmcCrhPYC31Q48r6lIxTVJUlfCHGbF/q8YLy//dtXuVp4kYT0BP688qcFoxKmIElfCFEu\np+udOXDtn4xauw2AUO9QC0ckakKSvhCiXK3SJ/C3oAkMHmzpSIQpyJBNIYQobMS4rx/GbaEbbgvd\nePWnVy0dkdlIS18IYfV038Tw5yfZ2NnB6qOriUuJs3RIZiNJXwhh9TQGW9wc3bCzg0Z2jSwdjlk1\nqKSfn1+y0j2AqyvcdZfl4hFCiLqmQSX99evh+eehfXswGCAxEbKzLR2VEELUHQ0q6RcVwbBh8MUX\nkJcHTZqUPLd492K2nNxi3B7VZRSTu022QJRCCGE5VjN653+n/kcf7z7MDJ1JV8+u7Dy909IhmdWC\nXxdgO9/WeBseM9zSIQkh6oAG1dLPKDrNoSZf8MZOtdWvD2oBPGV8PqRlCEM6DiE9N520rIa9+EN6\nbjr/GPAPZoTOYF/aPqb/MN3SIQkh6oAGlfQTrm/nTKONFBlGkFtYQNHAGdyc9Bu6//v+/zhx6QQA\nJy+f5IXeL2Crs8VG26D+N4taULx27K33Rf1XL7JBVn4We1P3GrebOTWja4uuZb7WPT+EN+59g0uZ\nObzzyweV2v++1H1k5mcCoNFo6OPTBwcbh5oHXsu+P/E97w15Dw8nDwC6tepWo/0dTz9e6hdRcMtg\n3B3da7RPUffl5oKHh/pfAK0W/vEPy8YkTMciSf+1n14z3h/WaRi9fXqX+/qYIzG88fMbdG7WmUJ9\nIQnpCWS8lFHxgXQFxmMlZiSW+ZIiQxGhK0IJbxsOwOELh/n0/k95sPODt732vbj3uHT9EqB+OTwV\n8hQ+rj4Vx1GL+vr0xcvFyyT7Grl2JC72LjSya8RfV/7iiaAneP2e102yb1F3FRSAra208Bsqi1zI\nvZhzEQcbBw6cO8DqY6srfL1BMTDirhFsf2w73z7yLXpFX+F7nGyd0G1/BwcbBxxsHJgYNLHMQlGK\noqDVaNn+2Ha2P7adsDZh6A1l7/+F/76Anc4OBxsHvkn8hl/P/Frxhy3HI+sfoc+KPsbbL6d/qdH+\nTM2gGFj14Cq2P7adx7s+XqnzLkR9lZ+v3goLLR2JeVmkpT8xaCK9fXqzePdifkr+ia1JWwHwdPYk\npGWISY6h0Wiw+X0ar4WZZHdGr4W9hlaj5Vj6sRrva+vJrawbvQ5nO2cW/LqA4xnH6d+mf6XfX6gv\nZEfyDuOXVF5RXo1jEsIatWwJzZqp9wu6QPgTlo3HnCzapx/cMpgf/vyBJXuXkF+UT2JGImkvqH3I\n646tY1/aPgDiz8fT0b2jSY994NwBXtr2ksVbr728euHq4EoL5xZVfu++tH2MWT/G+AsmrE0Ybo5u\npg5RiAbv9OmS+32fbditfYsm/bA2YYS1UZvi57PPE7gskKz8LAAW71nM3c3vpoNbBwa1H8TAdgMB\n9X9GdhZ0767uQ6uFzz8Hf//KH3dgu4GcyzqHgtppuXz4ctN9KBPJKcjBoBgAsNHa4GjreNtrDIqB\nuz3uZuv4rbUdnmgADIqBnAJ1odvi/4qGzyJJ/+df4OKNmkZBQdCmjdoHD9Dq3VYA6DQ6lg5bSqBn\nYKn35hdAkR4+/ljdfv559Vu6Kkm/ZeOWvNj3xRp/DnPZm7qXPiv6GBN9flE+GS9l4GLvYuHIREMy\nf+d83vr1Lex0dgBEtI+wcESiNlgk6f/7S2hvB8nJ0Lu3msBd7F24+OLFyu3AJpd/Z6iTjdICtFwp\nfAmoevdIXZVdkE1YmzB+evwnADz+5UF+UT7YWzgw0aBkF2bz5r1v1ukGkKX8lV8yobF5o+a80v8V\nC0dkOuWO3nniiSfw9PSkXbt2xscuX77MoEGDCAwMZPDgwVy9etX43LRp0/Dz8yMkJIT4+Pg77vep\np+Dbb2HKFLUwWlU0sW+C3fYPadukLW2btCW9yWZO5R6u2k5MJKsgi0u5l7iUe4kCfYFFYjCltKw0\nui3vRuCyQAKXBXLq6ilstbZV2sfG4xuN7w9cFsijGx81U7SmkV2Qbfx/ePn6ZUuHYzGKApcuqbfL\n1nsaAGiZO5gBLv9H2yZt8XbxZt7OeZYOyaTKbelPnDiRqVOnEhUVZXxszpw5REREMGvWLBYsWMCc\nOXNYvHgxGzZsICkpiYSEBHbv3k10dDSHbq5zbCIajQbbw5OZfmP05T/WbuFY9s+sO3aNUwX7TH68\nO2nj2obZ22cze/tsCvQFDPcdzlcjvyr3PbmFuWxN2mrsqy/U162rRek56WTlZ7H+4fUA2OnsaO/W\nvkr7SMxIpKdXT6b1mkZKZgrPbXnOHKGaRIG+gGaLmhnrp2fmZ7Jl3BYGdRhk4ciq7pfTv3A++7xx\n+95299LMqVm570lPh/PXYF0a/PYbLF0Kzs7qcx1NO26iXnHUt2Cw63QmhKpdqw1tFa1yk37//v1J\nTk4u9diWLVuIjY0FYOzYsQwcOJDFixezefNmxo0bB0BoaCiZmZmkpqbi5WWaiUJ34nnlQVLydrA2\n4Q+y9eB1fZRZj1dsQcQCFkQsAODbxG/5/ODnFb7n59M/M2XLFOOwzDH+Y+rcgg2Oto63XUepquaN\nmhPoGYiznbOJojIPvUGPRqPh0kvqhLsHVj9AbmGuhaOqntHrRtPDqwcONg4cPH8Qz0aeBHgGANC9\nZXcmhUy67T07doDuOuTlq9v/+Q+Mqp1/PsKCqtynn5KSYkzkXl5epKSkANyW4L29vUu99mZb16zg\n0qEf+f13UJRwIJz8fOjTB3JuDCLQamHt2oov0La5+CzPdnjWWFL5p6NV/UR3tjtlNxO/nYhyY2ri\nnWrYKKilnNNuVCxwdAS3MkZOKopCcMtg1o1eV+2YPtr7ER/sVctL5Bbmmnwoa113KfcS+Xo1S+k0\nOjydPS0cUd2goPDZ/Z/h6exJQnoCO5PVKrJ/XvmTZfuXMbTTUED99Wb8BaDAoEHwyeOWilqUJzY2\n1tjANiWLXMgdOmYSUx/qzfLlsH+/+tj163DiBOy70UMzaRKkplZtVI6pnbl2hjaubXj/vvcBcLZz\nRqu5/TLI7/vhf9ug+41rPZcvq3VLtGaY73w84zij/EbxaKDaV15cZ8caXM27iufbnjRv1ByAjNwM\ndkbvrLCMh7Xx8/DDz8MPgBOXTrDm2Bq6L1fHOF/MuUjaC2nGcyjqrvDwcMLDw43b8+aZ5tpClZN+\ncQu+devWpKam4u3tXerxYjc/V1k6HXTurN53rqWeAUWBv/0Niq9HH2gGAz0A9d8MLvYudG7Wudx9\nFBSAZ4uSlr5OV726JV8c+oI9qXsqLPvcwrlFhTE1RAX6Atwd3Y0T+AZ8MYDrRdctHFXd5tvUl7Mz\nzhq3fd7zUUeCCatV5aQfGRlJTEwML7/8MjExMURGRhofX7FiBY899hhxcXE0btzY7P355dFqQa9X\nl04E0GhgzZqSSV3F9Hp47z349FN1e8NeOJVctWPZaOy56LyN9ovVgxmecqHIsB+drvKnd3rodOLO\nxhm3725+d9WCqIKICPjrr5Ltjz6CoUPNdjir0uuzXqTnpAPqoIOVD6w0TkCsK85mnkWv6CmyuQZI\ni9/alJuVRo8eza5du8jIyMDHx4cXXniBefPmMWbMGGJiYmjRogVr164FYOTIkezYsQM/Pz8cHBxY\nuXJlrXyAO7Gzg7NnS8rDTp5c0hK/lVardicB/L0a1wSCnIcw6EQCHy1VR+V0eK8zK78owl5ng0YD\nI0aAewUViW/+SV6WmCMxuNi7cDzjeI1b+QcOwP/+py4n+frr6nwJYRq/p/1OwpQEbLQ2TP9hOmev\nna34TbWoq2dXxm1QB1xcdoMWDoMtHJGobeUm/XXryr7guG3btjIf//DDD2sekQm1uGm+ViMzDpLR\naDQ0KmxL+xsXb3VaLb/9BjoFdu5Uv4BuDGyqlud6PMfBCwcBaO3amr4+fWscc9u26heRSz2f5PvP\nX//JyoNqA2NUl1E80PkBC0cE7d3aY6O1obF9Y0uHcpvvx31vvD9wIITJJFyrUy8WUSkqKumOyLFg\niZC0NMjOVu9rNNChQ9kXa50dHNju3wENGi57wc6zq+h+IoLUNPWzVNWc8Dk1C9wECgshM1O92A7q\nIhtljVAqz4SvJ7Dj1A7j9ux+s5nSc0q1Y1o0aBHH048DEJcSx7iN43BzUINq26Qtvz5Rs9LXwjo5\nOMC0aTB7Niha0Dewipv1Iul/9ZU6e7e45d6zZ+nnt26FlBSIi7v9vaaiKGrruG1bdTstDf79b3jw\n9rVWOPX8KXIK1W+n+96fwbc7UtixAjLcwL7ylZPrlJ9+gt/P7Wftik8oKIC2ru2J31C1SUyJGYl8\nPPxjgloE8fH+jzl19RSgFv768tCXxtLQOq2OcQHjjPWY7qR7q+50b6VepBkfON44VT4zP5PeK2RE\nj6ieDz6AOTfaWVu3wf+d1vPJ/k8A9Vf9aL/R9bqabb1I+gUFMHo0rFhx+3Pjx6tdKAcOgL09DBtW\n8f6OHYP589VEbjCorfYSGr7LeIcz69dy5toZWru2Nj5TWFjS0n34YTWusrg5uhn/KLoHNiJ8BEQH\nwd//H3xi+knKtaLV9cHoOp/j7lEHSDp7hZ8T32fMGLWV7eio1k9ycIDERNh3CP5cDtm2cM239H48\nG3ni7eJNE4cmxhmkaVlpPLvlWeMw1G8Sv6FLsy70bV35biytRou3izpa7FretRp/3oT0BN7Y+Yax\nEmszp2Z8FPlRjfdbExuPb2TNsTXG7f6t+/Ncz7o747m+cnCA4oGHLZrZ0W7PTA6cPwDAjyd/xMPJ\ng4e6PGTBCGumXiT98owbV7n+cicnmDBB/WLIy4PQ0JKLt0/dtHZ6l/Nv0DXgCD1vXCut6exUczpw\nACIjS+oXOTvD8ePqZzSFlJSSoax2F/rwSMc+PDccDqYcZ/jVKKL6qM89/TS89Ra0agV//gk2NhAV\nBbv/gO136I7Lz4eMDDh6FM7ngqudG58MV1tTRy+acIZdNR08f5CzmWeZ1nMaBsXA+I3jLZL0z147\ny7V89Uts9dHVuNi7MKj9II6lH2N9wnpJ+mbWqJGGs58v4uuN6nbO/Q9RVM+vg9T7pF9ZX3wB125q\nADZpol5gvZVLvh99m/gRZcFJYbdaswYuXCjZfvhhtavr4kXo0kV9HtThqfn5tyf9nBz1tUuWqNt5\nlVxgq1cvaNxYTeIA0dHqf+3tobELjBmjbs+YUfp9LVqoz+m2w7L/lr3v7dthzzHY/xZkApfur1xM\ntamNaxtzrdS9AAAZ7UlEQVTG+I8xJn1L6La8G02dmqLT6AB4/773iWgfQWxyLD+f/tkiMVmTAQPU\nrtzihlXLGaCvxnW5usRqkr69PTS3wJBkjUbDkj1L+PaPb0m4cB6Ukr7Ap58uncznzoWuXW/fxxNP\nwGOPqYtVb9umJuKJE9Xnbv5cd5oBfPSo+od7Us0bPP88uLpWHHthIfz8s+nOW8pZePFFcLsOh/XQ\nIxRiv4bvf4aoLaY5RkNTaCjktyd+q9d9yPVds/Lr1tU7VpP0zeGvv9QulpsnOt3q9bDXOXRe7cjf\nkwf79peMsV+5Er78Uk3m778Phw+XnfQB3n5bHXZanOyrytERlrx9++NHnD5gVfprvLxALUDWtcUd\nAjCBS5ehb1/o3gpc06GRmcrm2OpsySvKw3WB+s2m1WjZNmGb8aJvTWXkZnDm2hkADl84zPQfphv7\n/u10dmjQlPf2cukNeo5cPGKsxFpkMF2zMidHrZ5ZPHclJwf+8Q+T7V7UE5L0q6lbN7Vb5cbcNB5+\nuOzXtXdrbyxPrPkDEm+ZAf/AA2prfeNG08a3fz8U12r69RRw02qLGxI2GEfOnLLfwgDH6cRMnQlQ\n5rKMNVFkc5W3f1O/bQxO5+jdG4aHwJ+/wflskx7KyMnWiSuzrhhLV0etjSIjN6NK+zh3Tr0+8vbb\nYLilpMbUrVPZnbLbODz0hd4vMK3XNEBN+jqtrtqxxybH8uCaB+nk3gmAoBZBFY5iqqzr19XuvzPq\n9xVarfqrUVTNdye/ISX3TwD6+PShj08fC0dUNRZN+lqtOtxy2DC1K+Hm7gmtVp0tumSJ+kcaGlp7\nMb355u0jhRSldHyzZqm3uuqTT9RlJAMD1V8IzW/6ifrithcZ0G4ATRya4FEUQlf7h3B1qER/TxU1\ns2+F59lnjKN0nE4+SjtX3wreZRpOtk5wY/2Xqi4EA7B7N5xNhfON1V8oSskgLooMRSyKWMTou0eb\nKNrS++7j04cfH/2x0u/Jy4NrV9WRbPZl/DCYMAEeeUS9r9VWrmtPlM3myEQ8xv/M+ezzJGYksj9t\nvyT9qnj4YWjZsmTb46aCkYsXQ1JSyXZAQO3EtHChOuywLK/Ws7UURo9Wy0/sTYXnbukzf6X/K7R3\na88zX4PPjZx48CD066fWIwL14lVNRgLZ6xxonfQP3r4x03/NJHC56eJ5WlYau1N2k3it9DKZLvYu\n3PvFvcYW82v9X+PVMNOc/M0nNjNqnVo0XlGUUl92cb/B1rdAlwT5vtB1NLz9GhxPhFWrq34sF3sX\nor+N5snvngRgQuAElt+/3CSf42ZXr6rDh6Mngtst32+bN6vXZYqTvqgZ3ckRvBU+AicndTTVN4nf\nWDqkKrNo0ndxufO4el9f9VbbOnRQbw1NWlYab/3yFgBX8q6U+ZorVyAkBH680cjU6coe4XSrvLZf\nsyT+OC5/QopNLL5U3Hfu39yf9Qnrmf7DdLKzwSWjZBzc92O/Ny4/uXTfUpKvJQNqX3Rurjo8FNTY\npk2rOMYLF+CVmNW8qzlAmvI7ET4jWfuoWmHv5jUS8vLgn2/BswNhTQL8N7niz16ejyI/4t3B7wKw\nOWkzXxz6omY7LIdGA4MiwPOW6rSnT6sj1956y7Kz2UXdIX36dVBiojrCpniYWF7erRPIqqZzs848\nEfwE2QVqJ/r0XtPxalx2BVSdTr3oWxVZ3eey6tvuOBo8uXKpO137R1X4nvs63sd9He8DYO9eeC6m\n5LmZM3QkJKhBnG1px1035midPKkm/ewbXebLlqnXRDp1Kv9Y6VuexSN4N9mO2Vw7exdNlUE42jpy\n6ZLa9VF4Y9XK3OZaPj35d3648iHnss4R1CKo1H4GfanOQD50/hCP3F1x01mr0RqvkdjrLLOqfUSE\nOt+iuHzIG29YJAxRh0jSr2UZGerPbbjzovAnT6o/2d98U92eP1+dXFbsjz/UfRw5Urljuti78Ma9\nd/7XnpSk7q+6Sxq3bwcz2k2jQyN15M+tZTKqatMmmDdP7fqbtQHSb+r90elKWvp3qAd4m8ZpI4j5\ncARduqjT64svzVy4oA5nLb5+M0n/Hm4dk9De+IItrmaq1Wjx+XE3L/1bneih0WhqXPSuzfttSMks\nWX9i48Mbq1QszsXehV/O/ILuDfUb0GBni4ONw22v8/UtOV9CgCT9WtWxo5q0XntN3b7vvpKJT6CO\n4PnzT7XUg4eHupTdrXr3Vmv+/Pabul3TOvi9esHnn5esYBZRydmG6TnpzI2dC8BV/Xl6h0LXFuW/\npyr694d27WBRLFSmV+LgQfjmpu7VLl1KJo+Vx9n55vPc9sbtdo6XezKojG6/Y8dKf/l07AiPPlrx\ncdNz0rk66ypOtk5M2jSJS9fVdXpTUuDPk+qcDVBrPRVPirtZSMsQCl5Tu8DOn4eQEA2u882wVJto\ncCTp1yJ/f7VOUFmefFJdqBrU1tmdRis99VTpshE1FR1ddlIpTzu3dszsPdPY7z6t5zSzrtWrYEBv\n0KNX9Hd8zbp1asG9sDC1Bb9xY+WSfk1t2qSuTRARoS6TOWdO5ZI+qIXldFpdqSU49+yFjEtAU7Wq\n6auvlvz/ef310n8/Tz2l49FHQaelBjMDhLWRpF9H3HOPeqsPHGwcjBUtzc2Rpmw3fIzdmx+DAnb5\nd15AZuBANUkePgy7dpk2jpwcdTY0qJPp+vdXf7WBen/uXPVX2rp1Ja+zsVG/hHRVHLbfxFXdX2pq\nSYkNUCudjhunjmRbv169eXqqXzZCVJYkfVGn+enH0cd+HC+/rM5+fvLJyr3v3Dl45cb30sWL5b+2\nIs2bqzOlFy1St+Pi1O61wFtq8Xl4qKOfil+3Z486QS4kBE6fgcTjJTHpb+9+r5SgIHVWs6Ko13yK\nj/VQ/S36WO/MmaN+8SdoQV/BIIK6SJJ+A2JjoxaIsrFRS0P0qUdzRgwGdcZo8f2a6NQJXnqpZFTO\n7NklayVXh5ubOt69WFBQ2TG6uJR+XffuJa/bv19tkTu3UofGFt7S+i/QF3C98Dp6KrdoeX36ZdiQ\nfPBBSb2sQ3HQrHHJ362dXdV/1VmCJP0GJC5OTSjF7lTHp65p0kQdkVS8jrC9vXqBtbocHdXCbnWN\nnfsFuo7azMWLoPy35PpEC+cWzPhxBjN+nEFREfgqtXAxQlRLcTl2gD2vwvcH1L9bvV79tXVzd1xd\nJUm/AbnrLktHUD2+vpCVZekozMtDcxeNFE+W7l/K9evglBxlHLv/1sC3eGugOq7y3XfVETyi7hs7\nFhwTYfUatZxMcenyuk6SvqjTbGzUf0xr16oTs+rrQu4eWl+i8r9j0Th1lmy/uZB944tOp6vZLxsh\nqkKSvqjTZs1SV+Eq5mmmcszmsmMHnD2rTgIrXuPZ2Vmtdtn6RhG3nBy1tLaXlzrhrqoLzgtRFZL0\nhVmdOqXWx4HS1xsqq3FjdfTLncyfr14T+O232h3BsnChOlpn//47X1AdOVKNq3giXXH57aZNS48o\nWrhQXUms2IMPmidmIUCSvjCjwED4+9+h6Ea533ffVdfRNZX33itZwKZjxzsX7zO1hQvVC8/Fxx08\nuOzXzZ5duf3dqUS3ra06UsT/xtKdf/2lPibqjryiPC7mXORqIRTpHIC63/8oSV+YTaNG8Oyz5tv/\n8OHVe9/Ro+ooi+peMB0yRL2ZW/PmavG94jWNdTrofOe5aaKWtXRuSVxKHP5L/SkogKyQbCDX0mFV\nSJK+sCphYWoiLV6pbLxl1juvtI7mq24hauietvdw4W/qoP2tWyFyb/0ohiFJX1iVgQPVmxDWSsry\nCSGEFZGkL4QQVqTaSd/Ozo7g4GCCg4MZOXIkAKdOnaJ37974+/vzyCOPUFhc/EQIIUSdUO2k7+Xl\nRXx8PPHx8WzYsAGAadOmMX36dI4ePUqTJk348MMPTRaoEEKImjNZ905RURE7d+5k1KhRAIwdO5bN\nN5ccFEKIBm78xvGM3zieRzc+yh8Zf1g6nDJVe/TOhQsX6NatGxqNhtmzZ9O7d29cXV3R3agt6uXl\nRcodBkJvXbOCS4d+BCA8PJzw8PDqhiGEEHVCt8TNRD6kTjv/YO8HHDx/kLuaVb8KYmxsLLGxsSaK\nrkS1k/7p06fx8PAgKSmJsLAw1lShpujQMZOY+lDv6h5aCCHqHI+rkYy/sbDOphObary/WxvE8+bN\nq/E+oQbdOx4eHgB06tSJ/v37c/r0aa5du4Zer9YJT01Nxdvb2yRBCiGEMI1qJf3s7GwKCtRFsS9c\nuMDu3bsJCAjgnnvuYd26dQDExMQQGRlpukiFEELUWLWS/qlTp+jVqxddu3alf//+vPjiiwQFBbFk\nyRIWL16Mv78/V69eZerUqaaOVwghRA1Uq08/ICCA+Pj42x5v164dcXFxNQ5KCCGEeUjtHSGEqCFn\nZ9i2TV3/AaDoQfDXwf4bFVL9/cHBwXLx3UzKMAghRA317w9Xr0Jamnpr2hRWroSnn4b77oPVqy0d\nYQlp6QshhAncvM5x334Q9SSM8YcnnyxZSKgukJa+EEJYEUn6QghhRaR7RwghTEyr0TL/5/ksP7Cc\n4x6wKwO++n/qc672rqx/eD1ajWXa3JL0hRDCxBZFLOLEpRMAvLMHunhBZD/1uSH/HkKRoQg7nZ1F\nYpOkL4QQJubj6oOPqw8AX+VDFwcY2F59zlIt/GKS9IUQopYVFoLGAFot3ChMXGvkQq4QQtSSPXvU\nhO/qCk5O6jDPnJzajUFa+kIIYWYbNsDJk3DqFGg6w4zvX0Wn0fH++5CU/jRBjdrWWiyS9IUQwowm\nT4YdO9T7wcHg7b2Mpo7pABS1WUNc2t0EtW1ba/FI0hdCCDPq1Uu9lZhkvDfnw2McTj/Ad380AeCu\nZnfh29TXrPFI0hdCCAuxOTuQU1c3sPzASS5kX8DT2ZPvxn5n3mOade9CCCHuyP54NDH3R+PuDptP\nbGbp/qVmP6aM3hFCCCsiLX0hhLCgl15Sa+0n20H2XeY/niR9IYSwkE8/hXPn1Ps//Q90Hur9xEQY\nPRr0enXbycl0x5SkL4QQFjJyZMn9zUlw9Bp89RUcOwaOjrBqlfpc376mO6YkfSGEqAO6hcCho7Bp\nk7odHQ1+fup9GxNmakn6QghRB9zTz453U3awz6cjAIm6xjyp32PyapyS9IUQog6IaB/B0WePYlAM\nAAQuC6RAXyBJXwghGiKNRkN7t/bGbXOVYJZx+kIIYUUk6QshhBWRpC+EEFZE+vSFEKKOOp5+nEZ2\njShyAzJMs09p6VtQbGyspUOoM+RclJBzUcKaz0Ufnz48/s3jjFo7iqs9eppsvyZP+j/88AP+/v50\n6dKFhQsXmnr3DYo1/0HfSs5FCTkXJaz5XPx3wn9JmJJAwpQEdAdNV2PfpN07+fn5TJ48mV27dtGy\nZUu6d+/O4MGDCQ4ONuVhhBBCVJNJW/p79uyhU6dOtG7dGltbW6Kioti8ebMpDyGEEKIGNIqiKKba\nWUxMDFu3buXLL78EYMWKFezbt4+PP/645IAajakOJ4QQVsUU6dqk3TuVSegm/I4RQghRRSbt3vH2\n9iY1NdW4nZKSgo+PjykPIYQQogZMmvR79OjBiRMnOH36NAUFBWzcuJGhQ4ea8hBCCCFqwKTdOw4O\nDnz66acMGzYMvV7PY489RkhIiCkPIYQQogZM2tK3s7PjlVdewdbWFj8/P2bPnl3q+cWLF+Pv74+/\nvz99+vQhMTGx1PPZ2dm0bt2aiRMnmjIsi7CzsyM4OJjg4GBG3rw8zg13OhfJyck4Ozsb3zt16tTa\nDt3kqnsuAM6cOUNERARBQUH4+/tz8eLF2gzd5Kp7Lvbv3298X3BwMC4uLnzwwQe1Hb5JVfdcFBYW\nEh0dja+vL76+vkyaNImioqLaDt+kqnsuFEVh+vTp+Pr64u/vz9q1ays+mGJCbdu2Lff5Xbt2KXl5\neYqiKMpnn32mDBw4sNTzM2fOVMaOHatMnDjRlGFZRHXPxalTp5Tw8HCzx1ebavJ30aNHD2Xbtm2K\noihKbm6ukp+fb75Aa0FN/40oiqIUFhYqHh4eytmzZ80SY22p7rnYuHGj0rdvX8VgMCh6vV7p3bu3\n8s0335g9XnOq7rlYv3690rdvX6WoqEjJzMxUOnfurFy8eLHcfdVqGYY+ffpgb28PQM+ePTlXvCIw\ncPDgQVJTUxkyZIhVjPAp71xYmzudi4MHDwIQEREBgKOjI3Z2pl1Qoq6pzN/Fjz/+iJ+fH97e3rUd\nXq2607lo164dBQUF5Ofnc/36dQoLC2nfvn15u6r37nQuEhMT6devHzqdjsaNG3P33Xezbdu2cvdl\n0qR/4cIFunXrRvfu3dmwYUO5r/3444+NP2MMBgMvvPACb7/9tinDsajqngtQk11QUBD9+vVj586d\n5g7V7Kp7LhITE3FxcWH48OH4+/vz/PPPo9frayNks6nJ30WxmJgYxo8fb64Qa011z0VQUBBDhgyh\nZcuWeHl5MXToUAICAmojZLOp7rkICAhg27Zt5OTkcOHCBeLi4jh79mz5BzPJb5Mbin9WnDhxQmnR\nooXyxx9/lPm6mJgYJTQ01PhTfdmyZcpbb72lKIqirFy5UomOjjZlWBZR3XORn5+vXLt2TVEURYmL\ni1M8PDyUq1ev1k7QZlLdc/Gf//xHcXJyUv744w+lsLBQGTZsmLJ06dJai9scqnsuiuXk5Cju7u7K\nlStXzB6ruVX3XOzcuVPp1q2bkp2drWRmZiohISHKL7/8Umtxm0NN/i5effVVxc/PTwkPD1dGjhyp\nLFiwoNxjmTTp32z06NFKTEzMbY/HxsYqfn5+Snp6uvGxxx9/XGndurXStm1bpVmzZoqzs7MyZcoU\nc4VW66pyLm7Vo0cPJS4uzpzh1aqqnItffvlF6datm3F72bJlylNPPVUrcdaG6vxdfPXVV8oDDzxQ\nG+HVqqqci3/+85/KrFmzjNuzZs2qMNHVJzXJF6NHj1a+/fbbcvdvsqSflZVl/PY5f/684uPjoxw8\neLDUaw4dOqR07NhRSUpKuuN+Vq1aVe9b+jU5F1euXFH0er2iKIryxx9/KO7u7hVemKnLanIu8vLy\nlA4dOihpaWmKwWBQxowZo7z33nu1FrupmeLfyP3336+sXbvW7LGaW03Oxdq1a5V+/fophYWFSn5+\nvtKnTx9l/fr1tRa7qdX07+LSpUuKoijK4cOHlU6dOhkv+N6JyZL+4cOHlaCgICUwMFDp1KmTsmTJ\nEkVRFOXvf/+78t133ymKoiiDBg1SPD09laCgICUoKEgZNmzYbftZtWpVvR+9U5Nz8cMPPyhdu3ZV\nAgIClC5duihr1qyx2OcwhZr+XWzbtk0JCAhQ7rrrLmX8+PH1evROTc/F5cuXlWbNmlX4j7o+qMm5\n0Ov1ytNPP6107NhR6dixY73vFajp30VAQIDStWtXJTQ09LYvi7KYtOCaEEKIuk1WzhJCCCsiSV8I\nIayIJH0hhLAikvSFEMKKSNIXDcqqVatwd3cvVZzswIEDALz++ut06tSJoKAggoKC2LNnj/F9Tzzx\nhLHsQ2FhIbNmzeLuu+8mKCiIwMBAFi5cWO5xBwwYwH//+99Sj73//vs8++yzXLx4kfvuu8/En1SI\n6jFpaWUhLE2j0fDggw/y+eefl3p8x44dfPfddxw9ehR7e3uysrLIyckB4OzZs/z1118EBQUBMHXq\nVGxsbDh8+DA6nY6srCw++uijco87duxYVq9ezeDBg42PrVmzhn/96180b96cpk2bEhcXR+/evU38\niYWoGmnpi3ojOTmZXr16MXbsWDp37swzzzzDhg0b6N27N3fddRdHjhwByl6SMyMjg6ZNmxqLVjVu\n3JgWLVoAai2bESNGAHDt2jXWr1/Pu+++i06nM7725ZdfNu5r+fLl+Pv7ExAQwHPPPQfAyJEj2bx5\ns7HEb3JyMmlpafTr1w+AESNGGNeOFsKSJOmLeuXo0aMsWrSI48ePs2fPHnbv3k1cXBwLFizgnXfe\nAWDTpk2luneuXLnCkCFDSE9Pp0uXLjz77LNs377duM+dO3fSvXt3QC3y1qlTpztW8zx06BBr1qzh\n4MGDHDlyBEVR+Prrr3F3d6dnz55s2bIFgNWrVzNmzBjj+3r06NEgiueJ+k+SvqhXunbtio+PDxqN\nhoCAAGN3SteuXY3VBUeMGEF8fLzx5ubmhouLCwcPHuSTTz6hZcuWPProo3z66acAnD59mpYtWxqP\nodFojPdXrFhBcHAw3t7epKSksG3bNhISEujRowfBwcH89NNPnDlzBijp4gG1a2fs2LHG/bRq1Yrk\n5GSznhshKkP69EW9Utw9A6DVao0tcq1Wi8FgKPe9Wq2WsLAwwsLC8PPz47PPPmPy5MmlXtO5c2eS\nkpIoKCjAzs6OSZMmMWnSJNq1a2cs6zx27Fjefffd2/Y/YsQIZsyYQXx8PLm5uQQHBxufUxSl1JeJ\nEJYiLX1hFU6ePMmpU6eM2/Hx8cZFSNq0aUNaWhoArq6ujB49mr/97W/G/nm9Xk9RUREajYZBgwbx\n9ddfk56eDqjXAIpb+s7Oztx7771MnDiRcePGlTr+uXPnaNOmjdk/pxAVkZa+qFdubS2X1Xou7tMv\ntnDhQpo3b84zzzxDdnY2RUVFdOjQgc8++wyAsLAwfv/9d+655x4AlixZwuuvv05QUBD29vZotVom\nTpxIy5Ytad26NXPnziU8PBxbW1s0Gg1Lly6ldevWgPorICoq6ra1Svft22fcvxCWJAXXhNU7e/Ys\nEyZMIDY21mzHGD9+PM8995wM2RQWJ907wur5+PjQoUMH4+QsU7t48SKXL1+WhC/qBGnpCyGEFZGW\nvhBCWBFJ+kIIYUUk6QshhBWRpC+EEFZEkr4QQlgRSfpCCGFF/j+v6gyyUOlJeQAAAABJRU5ErkJg\ngg==\n", | |
"text": "<matplotlib.figure.Figure at 0x2aaaac066dd0>" | |
} | |
], | |
"prompt_number": 13 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "b_peak = len(data.BsublistMes[(data.CPFlavor<0) & (data.BsublistMes>5.27)])*1.0 #b\nbbar_peak = len(data.BsublistMes[(data.CPFlavor>0) & (data.BsublistMes>5.27)])*1.0 #bbar\n\nb_sb = len(data.BsublistMes[(data.CPFlavor<0) & (data.BsublistMes<5.27)])*1.0 #b\nbbar_sb = len(data.BsublistMes[(data.CPFlavor>0) & (data.BsublistMes<5.27)])*1.0 #bbar", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "print b_peak, bbar_peak, b_sb, bbar_sb", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 4883.0 5426.0 4959.0 5765.0\n" | |
} | |
], | |
"prompt_number": 6 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "(b_peak-bbar_peak)/(b_peak+bbar_peak)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "pyout", | |
"prompt_number": 7, | |
"text": "-0.0526724221553982" | |
} | |
], | |
"prompt_number": 7 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "(b_sb-bbar_sb)/(b_sb+bbar_sb)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "pyout", | |
"prompt_number": 8, | |
"text": "-0.07515852293920179" | |
} | |
], | |
"prompt_number": 8 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "#so... 2 sigma at best\nsqrt(10000.)/10000.", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "pyout", | |
"prompt_number": 9, | |
"text": "0.01" | |
} | |
], | |
"prompt_number": 9 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "1898+1260+142+508+5184", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "pyout", | |
"prompt_number": 10, | |
"text": "8992" | |
} | |
], | |
"prompt_number": 10 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "b_peak + bbar_peak", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "pyout", | |
"prompt_number": 11, | |
"text": "10309.0" | |
} | |
], | |
"prompt_number": 11 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment