Created
October 6, 2012 16:06
-
-
Save pixyj/3845327 to your computer and use it in GitHub Desktop.
Analysis of Binary Search Tree Insertion Time
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Node: | |
def __init__(self,val,parent=None): | |
self.val = val | |
self.parent = parent | |
self.left = None | |
self.right = None | |
def setLeft(self,node): | |
self.left = node | |
def setRight(self,node): | |
self.right = node | |
class Tree: | |
def __init__(self,val): | |
self.root = Node(val,None) | |
self.count_add = 0 | |
def add(self,val): | |
if self.root.val == val: | |
return False | |
q1=self.root | |
p1=self.root | |
while q1 != None: | |
self.count_add += 1 | |
p1 = q1 | |
if q1.val > val: | |
q1 = q1.left | |
elif q1.val < val: | |
q1 = q1.right | |
else: | |
print 'duplicate' | |
return False | |
node = Node(val) | |
if p1.val > val: | |
p1.left = node | |
else: | |
p1.right = node | |
return True | |
def pre_order(self,root,cb): | |
if root == None: | |
return; | |
cb(root) | |
self.pre_order(root.left,cb) | |
self.pre_order(root.right,cb) | |
def post_order(self,root,cb): | |
if root == None: | |
return | |
self.post_order(root.left,cb) | |
self.post_order(root.right,cb) | |
cb(root) | |
def in_order(self,root,cb): | |
if root == None: | |
return | |
self.in_order(root.left,cb) | |
cb(root) | |
self.in_order(root.right,cb) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tree | |
import itertools | |
import pdb | |
import math | |
def calc_count_add(size): | |
l = [i for i in xrange(size)] | |
perms = itertools.permutations(l) | |
count_total = 0 | |
while True: | |
try: | |
perm = perms.next() | |
t=tree.Tree(perm[0]) | |
for i in perm[1::]: | |
t.add(i) | |
count_total += t.count_add | |
except StopIteration: | |
break; | |
return count_total | |
def calc_count_upto(upto): | |
count_upto = [] | |
for i in xrange(1,upto+1): | |
avg_count = calc_count_add(i) | |
avg_count = avg_count*1.0/math.factorial(i) | |
count_upto.append(avg_count) | |
return count_upto | |
def calc_formula(size): | |
if size == 1: | |
return 0 | |
else: | |
count = 0.0 | |
for i in xrange(1,size): | |
count += calc_formula(i) | |
count = count * 2/size | |
count += size - 1 | |
return count | |
def calc_formula_upto(size): | |
counts = [] | |
[counts.append(calc_formula(i)) for i in xrange(1,size+1)] | |
return counts |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Gist to find the average time to insert a node onto a binary search tree.
Reference: http://www.youtube.com/watch?v=KyMiqaA0ijM
Most interesting part:
Best Case Time = O(nlogn)
Average time = O(nlogn)
Worst Case Time = O(n^2)