Skip to content

Instantly share code, notes, and snippets.

@pixyj
Created February 16, 2014 09:10
Show Gist options
  • Save pixyj/9031525 to your computer and use it in GitHub Desktop.
Save pixyj/9031525 to your computer and use it in GitHub Desktop.
Maximum Likelihood estimator for k heads in n trials. https://www.udacity.com/course/viewer#!/c-st101/l-48727700/e-48726376/m-48724282
0 0
0.01 0.000297
0.02 0.001176
0.03 0.002619
0.04 0.004608
0.05 0.007125
0.06 0.010152
0.07 0.013671
0.08 0.017664
0.09 0.022113
0.1 0.027
0.11 0.032307
0.12 0.038016
0.13 0.044109
0.14 0.050568
0.15 0.057375
0.16 0.064512
0.17 0.071961
0.18 0.079704
0.19 0.087723
0.2 0.096
0.21 0.104517
0.22 0.113256
0.23 0.122199
0.24 0.131328
0.25 0.140625
0.26 0.150072
0.27 0.159651
0.28 0.169344
0.29 0.179133
0.3 0.189
0.31 0.198927
0.32 0.208896
0.33 0.218889
0.34 0.228888
0.35 0.238875
0.36 0.248832
0.37 0.258741
0.38 0.268584
0.39 0.278343
0.4 0.288
0.41 0.297537
0.42 0.306936
0.43 0.316179
0.44 0.325248
0.45 0.334125
0.46 0.342792
0.47 0.351231
0.48 0.359424
0.49 0.367353
0.5 0.375
0.51 0.382347
0.52 0.389376
0.53 0.396069
0.54 0.402408
0.55 0.408375
0.56 0.413952
0.57 0.419121
0.58 0.423864
0.59 0.428163
0.6 0.432
0.61 0.435357
0.62 0.438216
0.63 0.440559
0.64 0.442368
0.65 0.443625
0.66 0.444312
0.67 0.444411
0.68 0.443904
0.69 0.442773
0.7 0.441
0.71 0.438567
0.72 0.435456
0.73 0.431649
0.74 0.427128
0.75 0.421875
0.76 0.415872
0.77 0.409101
0.78 0.401544
0.79 0.393183
0.8 0.384
0.81 0.373977
0.82 0.363096
0.83 0.351339
0.84 0.338688
0.85 0.325125
0.86 0.310632
0.87 0.295191
0.88 0.278784
0.89 0.261393
0.9 0.243
0.91 0.223587
0.92 0.203136
0.93 0.181629
0.94 0.159048
0.95 0.135375
0.96 0.110592
0.97 0.084681
0.98 0.057624
0.99 0.029403
import itertools
import math
def combo(n, r):
"""nCr"""
return math.factorial(n) / math.factorial(n - r) / math.factorial(r)
def prob_exact(heads, tails, prob_h):
"""Binomial distribution of `heads` successes in `heads + tails` trials"""
n = heads + tails
return combo(n, heads) * pow(prob_h, heads) * pow(1 - prob_h, tails)
def seq(start, end, step):
"""Like range, for floating point steps"""
sample_count = (end - start) / step
return itertools.islice(itertools.count(start, step), sample_count)
def prob_seq(prob_head, seq):
"""Maximum likelihood estimator given a sequence of heads(1) and tails(0) and
probabilility of heads"""
heads = len(filter(lambda i: i == "1", seq))
tails = len(seq) - heads
return prob_exact(heads, tails, prob_head)
def plot_distribution():
"""Plot the MLE curve"""
probs = ((i, prob_seq(i, "101")) for i in seq(0, 1, 0.01))
def prob_to_str(k, v):
return "{},{}".format(k, v)
prob_strs = (prob_to_str(k, v) for k, v in probs)
s = "\n".join(prob_strs)
with open("mle.csv", 'w') as f:
f.write(s)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment