Last active
January 16, 2020 00:50
-
-
Save piyush01123/4a9f97a5df3ec1a816a8b867b871c4f2 to your computer and use it in GitHub Desktop.
Visualize First layer of popular trained CNNs
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from torchvision import models | |
import torch | |
import cv2 | |
import numpy as np | |
items = ['alexnet', 'densenet121', 'densenet161', 'densenet169', 'densenet201', | |
'googlenet', 'mnasnet0_5', 'mnasnet0_75', 'mnasnet1_0', 'mnasnet1_3', | |
'mobilenet_v2', 'resnet101', 'resnet152', 'resnet18', 'resnet34', 'resnet50', | |
'shufflenet_v2_x0_5', 'shufflenet_v2_x1_0', 'shufflenet_v2_x1_5', 'shufflenet_v2_x2_0', | |
'squeezenet1_0', 'squeezenet1_1', 'wide_resnet101_2', 'wide_resnet50_2'] | |
for item in items: | |
print(item) | |
try: | |
model = getattr(models, item)(pretrained=True) | |
except (ValueError, NotImplementedError): | |
print("No checkpoint is available for model type {}".format(item)) | |
continue | |
name = model._get_name() | |
layer = list(model.state_dict().keys())[0] | |
weights = model.state_dict()[layer] | |
print(name, layer, weights.shape) | |
size = int(weights.shape[2]) | |
num_channels = int(weights.shape[0]) | |
s1 = 8 | |
s2 = num_channels//s1 | |
A = torch.empty((3,s1*size,s2*size), dtype=torch.float32) | |
for i in range(s1): | |
for j in range(s2): | |
A[:, size*i:size*(i+1), size*j:size*(j+1)] = weights[s2*i+j] | |
B = A.numpy().T | |
img = 255*(B-B.min())/(B.max()-B.min()) | |
img = img.astype(np.uint8) | |
for i in range(1,s1): | |
img = cv2.line(img, (size*i,0), (size*i,s2*size), (0,0,0), 1) | |
for i in range(1,s2): | |
img = cv2.line(img, (0,size*i), (s1*size,size*i), (0,0,0), 1) | |
cv2.imwrite("{}_layer1.jpg".format(item), img) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment