Created
May 24, 2019 23:48
-
-
Save pknowledge/05d68179cdb364e4fa4db608517f8d17 to your computer and use it in GitHub Desktop.
Canny Edge Detection in OpenCV Python
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cv2 | |
import numpy as np | |
from matplotlib import pyplot as plt | |
img = cv2.imread("lena.jpg") | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
canny = cv2.Canny(img, 100, 200) | |
titles = ['image', 'canny'] | |
images = [img, canny] | |
for i in range(2): | |
plt.subplot(1, 2, i+1), plt.imshow(images[i], 'gray') | |
plt.title(titles[i]) | |
plt.xticks([]),plt.yticks([]) | |
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cv2 | |
import numpy as np | |
from matplotlib import pyplot as plt | |
img = cv2.imread("messi5.jpg", cv2.IMREAD_GRAYSCALE) | |
lap = cv2.Laplacian(img, cv2.CV_64F, ksize=3) | |
lap = np.uint8(np.absolute(lap)) | |
sobelX = cv2.Sobel(img, cv2.CV_64F, 1, 0) | |
sobelY = cv2.Sobel(img, cv2.CV_64F, 0, 1) | |
edges = cv2.Canny(img,100,200) | |
sobelX = np.uint8(np.absolute(sobelX)) | |
sobelY = np.uint8(np.absolute(sobelY)) | |
sobelCombined = cv2.bitwise_or(sobelX, sobelY) | |
titles = ['image', 'Laplacian', 'sobelX', 'sobelY', 'sobelCombined', 'Canny'] | |
images = [img, lap, sobelX, sobelY, sobelCombined, edges] | |
for i in range(6): | |
plt.subplot(2, 3, i+1), plt.imshow(images[i], 'gray') | |
plt.title(titles[i]) | |
plt.xticks([]),plt.yticks([]) | |
plt.show() |
Mr nagasrisai,
I tested your code and found out that the error lies in this line k=cv2.waitkey(0)
If you change it and write k=cv2.waitkey(1) , it will work well
nice
Can you please help me with code for video data, to find edges of the extracted frames then subtracting the frames from the centered frame and hence save it into a directory?
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
import cv2
import numpy as np
from matplotlib import pyplot as plt
def nothing(i):
pass
cv2.namedWindow("image")
cv2.createTrackbar('x',"image",0,100,nothing)
cv2.createTrackbar('y',"image",0,100,nothing)
while(True):
img = cv2.imread("lena.jpg")
x=cv2.getTrackbarPos('x',"image")
y=cv2.getTrackbarPos('y',"image")
canny= cv2.Canny(img,x,y)
cv2.destroyAllWindows()
bro its not working bro can you please help me bro