Last active
May 27, 2016 13:31
-
-
Save plankes-projects/c6c169dd051ba22edbb3e12f0acf1c06 to your computer and use it in GitHub Desktop.
AlexNet configuration for DeepLearning4j
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package trainer; | |
import org.deeplearning4j.nn.api.OptimizationAlgorithm; | |
import org.deeplearning4j.nn.conf.GradientNormalization; | |
import org.deeplearning4j.nn.conf.MultiLayerConfiguration; | |
import org.deeplearning4j.nn.conf.NeuralNetConfiguration; | |
import org.deeplearning4j.nn.conf.Updater; | |
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer; | |
import org.deeplearning4j.nn.conf.layers.DenseLayer; | |
import org.deeplearning4j.nn.conf.layers.LocalResponseNormalization; | |
import org.deeplearning4j.nn.conf.layers.OutputLayer; | |
import org.deeplearning4j.nn.conf.layers.SubsamplingLayer; | |
import org.deeplearning4j.nn.weights.WeightInit; | |
import org.nd4j.linalg.lossfunctions.LossFunctions; | |
public class AlexNetTrainer extends AbstractTrainer { | |
@Override | |
protected void init() { | |
epochs = 5; | |
} | |
@Override | |
protected MultiLayerConfiguration buildConfig(int imageWidth, int imageHeight, int channel, int numOfClasses) { | |
int seed = 123; | |
int iterations = 1; | |
WeightInit weightInit = WeightInit.XAVIER; | |
String activation = "relu"; | |
Updater updater = Updater.NESTEROVS; | |
double lr = 1e-3; | |
double mu = 0.9; | |
double l2 = 5e-4; | |
boolean regularization = true; | |
SubsamplingLayer.PoolingType poolingType = SubsamplingLayer.PoolingType.MAX; | |
double nonZeroBias = 1; | |
double dropOut = 0.5; | |
MultiLayerConfiguration.Builder builder = new NeuralNetConfiguration.Builder().seed(seed).iterations(iterations) | |
.activation(activation).weightInit(weightInit) | |
.gradientNormalization(GradientNormalization.RenormalizeL2PerLayer) | |
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).learningRate(lr).momentum(mu) | |
.regularization(regularization).l2(l2).updater(updater).useDropConnect(true) | |
// AlexNet | |
.list() | |
.layer(0, | |
new ConvolutionLayer.Builder(new int[] { 11, 11 }, new int[] { 4, 4 }, new int[] { 3, 3 }) | |
.name("cnn1").nIn(channel).nOut(96).build()) | |
.layer(1, new LocalResponseNormalization.Builder().name("lrn1").build()) | |
.layer(2, | |
new SubsamplingLayer.Builder(poolingType, new int[] { 3, 3 }, new int[] { 2, 2 }) | |
.name("maxpool1").build()) | |
.layer(3, | |
new ConvolutionLayer.Builder(new int[] { 5, 5 }, new int[] { 1, 1 }, new int[] { 2, 2 }) | |
.name("cnn2").nOut(256).biasInit(nonZeroBias).build()) | |
.layer(4, | |
new LocalResponseNormalization.Builder().name("lrn2").k(2).n(5).alpha(1e-4).beta(0.75).build()) | |
.layer(5, | |
new SubsamplingLayer.Builder(poolingType, new int[] { 3, 3 }, new int[] { 2, 2 }) | |
.name("maxpool2").build()) | |
.layer(6, | |
new ConvolutionLayer.Builder(new int[] { 3, 3 }, new int[] { 1, 1 }, new int[] { 1, 1 }) | |
.name("cnn3").nOut(384).build()) | |
.layer(7, | |
new ConvolutionLayer.Builder(new int[] { 3, 3 }, new int[] { 1, 1 }, new int[] { 1, 1 }) | |
.name("cnn4").nOut(384).biasInit(nonZeroBias).build()) | |
.layer(8, | |
new ConvolutionLayer.Builder(new int[] { 3, 3 }, new int[] { 1, 1 }, new int[] { 1, 1 }) | |
.name("cnn5").nOut(256).biasInit(nonZeroBias).build()) | |
.layer(9, | |
new SubsamplingLayer.Builder(poolingType, new int[] { 3, 3 }, new int[] { 2, 2 }) | |
.name("maxpool3").build()) | |
.layer(10, | |
new DenseLayer.Builder().name("ffn1").nOut(4096).biasInit(nonZeroBias).dropOut(dropOut).build()) | |
.layer(11, | |
new DenseLayer.Builder().name("ffn2").nOut(4096).biasInit(nonZeroBias).dropOut(dropOut).build()) | |
.layer(12, | |
new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD).name("output") | |
.nOut(numOfClasses).activation("softmax").build()) | |
.backprop(true).pretrain(false).cnnInputSize(imageHeight, imageWidth, channel); | |
return builder.build(); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment