Created
July 3, 2017 08:52
-
-
Save pltrdy/8d8ce9f4dbcf1793f992a7bab358b44d to your computer and use it in GitHub Desktop.
Running PTB LM (10k vocabulary) benchmark with tensor2tensor
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/bin/bash | |
set -e | |
source activate tensorflow | |
# See what problems, models, and hyperparameter sets are available. | |
# You can easily swap between them (and add new ones). | |
#t2t-trainer --registry_help | |
PROBLEM="lmptb_10k" | |
MODEL="attention_lm" | |
HPARAMS="attention_lm_base" | |
DATA_DIR="./data" | |
TMP_DIR="/tmp/t2t_datagen" | |
TRAIN_DIR="attn_lm" | |
VALID_SRC="$TMP_DIR/simple-examples/data/ptb.valid.txt" | |
mkdir -p $DATA_DIR $TMP_DIR $TRAIN_DIR | |
echo "Parameters:" | |
printf "* Problem:\t$PROBLEM\n" | |
printf "* Model:\t$MODEL\n" | |
printf "* HParams:\t$HPARAMS\n" | |
printf "* Data:\t$DATA_DIR\n" | |
printf "* Tmp:\t$TMP_DIR\n" | |
printf "* Train:\t$TRAIN_DIR\n" | |
printf "* Cuda device:\t$CUDA_VISIBLE_DEVICES\n" | |
generate(){ | |
echo "Generating data..." | |
t2t-datagen \ | |
--data_dir=$DATA_DIR \ | |
--tmp_dir=$TMP_DIR \ | |
--num_shards=100 \ | |
--problem=$PROBLEM | |
} | |
train(){ | |
echo "Training..." | |
python3 tensor2tensor/bin/t2t-trainer \ | |
--model="attention_lm" \ | |
--problems="lmptb_10k" \ | |
--hparams_set="attention_lm_base" \ | |
--output_dir="$TRAIN_DIR" \ | |
--data_dir="$DATA_DIR" | |
} | |
decode(){ | |
echo "Decoding..." | |
DECODE_FILE="$VALID_SRC" | |
BEAM_SIZE=4 | |
ALPHA="0.6" | |
t2t-trainer \ | |
--data_dir="$DATA_DIR" \ | |
--problems="$PROBLEM" \ | |
--model=$MODEL \ | |
--hparams_set="$HPARAMS" \ | |
--output_dir="$TRAIN_DIR" \ | |
--train_steps=0 \ | |
--eval_steps=0 \ | |
--decode_from_file="$DECODE_FILE" \ | |
--decode_beam_size="$BEAM_SIZE" \ | |
} | |
action="$1" | |
echo "$action" | |
if [ -z "$action" ]; then | |
echo "no action. please add one of the following command [gen, train, gentrain, decode]" | |
elif [ $action = "gen" ]; then | |
generate | |
elif [ $action = "train" ]; then | |
train | |
elif [ $action = "gentrain" ]; then | |
generate | |
train | |
elif [ $action = "decode" ]; then | |
decode | |
fi |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
is this decode function the intended way to predict based on an input?