Last active
July 15, 2023 13:26
-
-
Save plusangel/5249e4062c0b16c7996dbfa3a28edca7 to your computer and use it in GitHub Desktop.
fashion mnist neural network approach
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# To load the mnist data | |
from keras.datasets import fashion_mnist | |
from tensorflow.keras.models import Sequential | |
# importing various types of hidden layers | |
from tensorflow.keras.layers import Conv2D, MaxPooling2D,\ | |
Dense, Flatten, Softmax | |
from tensorflow.keras.optimizers import Adam | |
from tensorflow.keras.losses import SparseCategoricalCrossentropy | |
from tensorflow.keras.callbacks import EarlyStopping | |
from tensorflow.keras.callbacks import EarlyStopping | |
import matplotlib.pyplot as plt | |
import numpy as np | |
# Split the data into training and testing | |
(trainX, trainy), (testX, testy) = fashion_mnist.load_data() | |
# Print the dimensions of the dataset | |
print('Train: X = ', trainX.shape) | |
print('Test: X = ', testX.shape) | |
for i in range(1, 10): | |
# Create a 3x3 grid and place the | |
# image in ith position of grid | |
plt.subplot(3, 3, i) | |
# Insert ith image with the color map 'grap' | |
plt.imshow(trainX[i], cmap=plt.get_cmap('gray')) | |
# Display the entire plot | |
plt.show() | |
trainX = trainX/255.0 | |
testX = testX/255.0 | |
model = Sequential([ | |
Flatten(input_shape=(28, 28)), | |
Dense(128, activation='relu'), | |
Dense(10) | |
]) | |
model.compile(optimizer='adam', | |
loss=SparseCategoricalCrossentropy(from_logits=True), | |
metrics=['accuracy']) | |
es = EarlyStopping(monitor='val_accuracy', | |
mode='max', | |
patience=5, | |
restore_best_weights=True) | |
history = model.fit(trainX, trainy, epochs=100, validation_split=0.1, callbacks=[es]) | |
plt.plot(history.history['accuracy']) | |
plt.plot(history.history['val_accuracy']) | |
plt.title('Model Accuracy') | |
plt.ylabel('Accuracy') | |
plt.xlabel('Epoch') | |
plt.legend(['Train', 'Val'], loc='upper left') | |
plt.show() | |
test_loss, test_acc = model.evaluate(testX, testy) | |
print('\nTest accuracy:', test_acc) | |
probability_model = Sequential([ | |
model, | |
Softmax() | |
]) | |
predictions = probability_model.predict(testX) | |
np.argmax(predictions[0]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment