Created
January 13, 2021 22:43
-
-
Save pmbaumgartner/749b9f58aa9e74d5232ad27004d5ce34 to your computer and use it in GitHub Desktop.
TSSS Python
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import numba | |
@numba.njit() | |
def tsss(vec1, vec2): | |
euclidean_distance = np.linalg.norm(vec1 - vec2) | |
cosine_distance = np.dot(vec1, vec2.T) / ( | |
np.linalg.norm(vec1) * np.linalg.norm(vec2) | |
) | |
magnitude_difference = abs(np.linalg.norm(vec1) - np.linalg.norm(vec2)) | |
theta = np.arccos(cosine_distance) + np.radians(10.0) | |
triangle = (np.linalg.norm(vec1) * np.linalg.norm(vec2) * np.sin(theta)) / 2 | |
sector = ( | |
np.pi | |
* ((euclidean_distance + magnitude_difference) ** 2) | |
* (np.degrees(theta) / 360) | |
) | |
return triangle * sector | |
# Equation 7 From Paper | |
@numba.njit() | |
def tsss_eq7(vec1, vec2): | |
euclidean_distance = np.linalg.norm(vec1 - vec2) | |
cosine_distance = np.dot(vec1, vec2.T) / ( | |
np.linalg.norm(vec1) * np.linalg.norm(vec2) | |
) | |
magnitude_difference = abs(np.linalg.norm(vec1) - np.linalg.norm(vec2)) | |
theta = np.arccos(cosine_distance) + np.radians(10.0) | |
result = ( | |
np.linalg.norm(vec1) | |
* np.linalg.norm(vec2) | |
* np.sin(theta) | |
* np.degrees(theta) | |
* np.pi | |
* ((euclidean_distance + magnitude_difference) ** 2) | |
) / 720 | |
return result | |
for i in range(200): | |
vec1 = np.random.random(200) | |
vec2 = np.random.random(200) | |
sim1 = tsss(vec1, vec2) | |
sim2 = tsss_eq7(vec1, vec2) | |
assert sim1 >= 0, f"{sim1}" | |
assert sim2 >= 0, f"{sim2}" | |
assert np.isclose(sim1, sim2) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment