Last active
June 16, 2022 03:23
-
-
Save pmelchior/bf50fb0d22d3c93fea4f3b5f1afd0f1b to your computer and use it in GitHub Desktop.
Proximal Adam for pytorch
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from torch.optim import Optimizer | |
import math | |
import torch | |
from torch import Tensor | |
from typing import List, Optional, Callable | |
def adaprox(params: List[Tensor], | |
proxes: List[Callable[[Tensor, float], Tensor]], | |
grads: List[Tensor], | |
exp_avgs: List[Tensor], | |
exp_avg_sqs: List[Tensor], | |
max_exp_avg_sqs: List[Tensor], | |
state_steps: List[int], | |
*, | |
amsgrad: bool, | |
beta1: float, | |
beta2: float, | |
lr: float, | |
weight_decay: float, | |
eps: float, | |
maximize: bool, | |
prox_max_iter: int, | |
e_rel: float): | |
r"""Functional API that performs Adam algorithm computation. | |
See :class:`~torch.optim.Adam` for details. | |
""" | |
for i, (param, prox) in enumerate(zip(params, proxes)): | |
# ordinary Adam | |
grad = grads[i] if not maximize else -grads[i] | |
M = exp_avgs[i] | |
V = exp_avg_sqs[i] | |
step = state_steps[i] | |
bias_correction1 = 1 - beta1 ** step | |
bias_correction2 = 1 - beta2 ** step | |
if weight_decay != 0: | |
grad = grad.add(param, alpha=weight_decay) | |
# Decay the first and second moment running average coefficient | |
M.mul_(beta1).add_(grad, alpha=1 - beta1) | |
V.mul_(beta2).addcmul_(grad, grad.conj(), value=1 - beta2) | |
if amsgrad: | |
# Maintains the maximum of all 2nd moment running avg. till now | |
torch.maximum(max_exp_avg_sqs[i], V, out=max_exp_avg_sqs[i]) | |
# Use the max. for normalizing running avg. of gradient | |
psi = (max_exp_avg_sqs[i].sqrt() / math.sqrt(bias_correction2)).add_(eps) | |
else: | |
psi = (V.sqrt() / math.sqrt(bias_correction2)).add_(eps) | |
step_size = lr / bias_correction1 | |
param.addcdiv_(M, psi, value=-step_size) | |
# proximal update(s) | |
alpha = lr | |
gamma = alpha / psi.max() | |
x = param.data | |
z = torch.clone(x) | |
for tau in range(prox_max_iter): | |
z_ = prox(z - gamma / alpha * psi * (z - x), gamma) | |
if torch.square(z-z_).sum() <= e_rel*e_rel * torch.square(z).sum(): | |
break | |
z = z_ | |
param.data = z_ | |
class AdaProx(Optimizer): | |
r"""Implements proximal Adam algorithm. | |
For further details regarding the algorithm we refer to | |
`Proximal Adam: Robust Adaptive Update Scheme for Constrained Optimization` | |
(https://arxiv.org/abs/1910.10094) | |
Args: | |
params (iterable): iterable of parameters to optimize or dicts defining | |
parameter groups | |
proxes (iterable): iterable of proximal operators with signature | |
prox(x, gamma) -> x_ | |
lr (float, optional): learning rate (default: 1e-3) | |
betas (Tuple[float, float], optional): coefficients used for computing | |
running averages of gradient and its square (default: (0.9, 0.999)) | |
eps (float, optional): term added to the denominator to improve | |
numerical stability (default: 1e-8) | |
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | |
amsgrad (boolean, optional): whether to use the AMSGrad variant of this | |
algorithm from the paper `On the Convergence of Adam and Beyond`_ | |
(default: False) | |
maximize (bool, optional): maximize the params based on the objective, instead of | |
minimizing (default: False) | |
""" | |
def __init__(self, params, proxes, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, | |
weight_decay=0, amsgrad=False, *, maximize: bool = False): | |
if not 0.0 <= lr: | |
raise ValueError("Invalid learning rate: {}".format(lr)) | |
if not 0.0 <= eps: | |
raise ValueError("Invalid epsilon value: {}".format(eps)) | |
if not 0.0 <= betas[0] < 1.0: | |
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) | |
if not 0.0 <= betas[1] < 1.0: | |
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) | |
if not 0.0 <= weight_decay: | |
raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) | |
defaults = dict(lr=lr, betas=betas, eps=eps, | |
weight_decay=weight_decay, amsgrad=amsgrad, maximize=maximize) | |
super(AdaProx, self).__init__(params, defaults) | |
# one prox per group | |
if len(proxes) != len(self.param_groups): | |
raise ValueError("Invalid length of argument proxs: {} instead of {}".format(len(proxes), len(self.param_groups))) | |
for group, prox in zip(self.param_groups, list(proxes)): | |
group.setdefault('prox', prox) | |
def __setstate__(self, state): | |
super(AdaProx, self).__setstate__(state) | |
for group in self.param_groups: | |
group.setdefault('amsgrad', False) | |
group.setdefault('maximize', False) | |
@torch.no_grad() | |
def step(self, closure=None): | |
"""Performs a single optimization step. | |
Args: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
""" | |
loss = None | |
if closure is not None: | |
with torch.enable_grad(): | |
loss = closure() | |
for group in self.param_groups: | |
params_with_grad = [] | |
proxes_with_grad = [] | |
grads = [] | |
exp_avgs = [] | |
exp_avg_sqs = [] | |
max_exp_avg_sqs = [] | |
state_steps = [] | |
beta1, beta2 = group['betas'] | |
prox = group['prox'] | |
for p in group['params']: | |
if p.grad is not None: | |
params_with_grad.append(p) | |
proxes_with_grad.append(prox) | |
if p.grad.is_sparse: | |
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') | |
grads.append(p.grad) | |
state = self.state[p] | |
# Lazy state initialization | |
if len(state) == 0: | |
state['step'] = 0 | |
# Exponential moving average of gradient values | |
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) | |
# Exponential moving average of squared gradient values | |
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) | |
if group['amsgrad']: | |
# Maintains max of all exp. moving avg. of sq. grad. values | |
state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) | |
exp_avgs.append(state['exp_avg']) | |
exp_avg_sqs.append(state['exp_avg_sq']) | |
if group['amsgrad']: | |
max_exp_avg_sqs.append(state['max_exp_avg_sq']) | |
# update the steps for each param group update | |
state['step'] += 1 | |
# record the step after step update | |
state_steps.append(state['step']) | |
# regular Adam update step | |
adaprox(params_with_grad, | |
proxes_with_grad, | |
grads, | |
exp_avgs, | |
exp_avg_sqs, | |
max_exp_avg_sqs, | |
state_steps, | |
amsgrad=group['amsgrad'], | |
beta1=beta1, | |
beta2=beta2, | |
lr=group['lr'], | |
weight_decay=group['weight_decay'], | |
eps=group['eps'], | |
maximize=group['maximize'], | |
prox_max_iter=100, | |
e_rel=1e-4) | |
return loss |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Details about the proximal Adam optimizer are in this paper.