Created
September 23, 2012 03:48
-
-
Save pocketwalker/3768785 to your computer and use it in GitHub Desktop.
Compassionate Screen Scraping
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import httplib2,time,re | |
from BeautifulSoup import BeautifulSoup | |
SCRAPING_CONN = httplib2.Http(".cache") | |
SCRAPING_DOMAIN_RE = re.compile("\w+:/*(?P<domain>[a-zA-Z0-9.]*)/") | |
SCRAPING_DOMAINS = {} | |
SCRAPING_CACHE_FOR = 60 * 15 # cache for 15 minutes | |
SCRAPING_REQUEST_STAGGER = 1100 # in milliseconds | |
SCRAPING_CACHE = {} | |
def fetch(url,method="GET"): | |
key = (url,method) | |
now = time.time() | |
if SCRAPING_CACHE.has_key(key): | |
data,cached_at = SCRAPING_CACHE[key] | |
if now - cached_at < SCRAPING_CACHE_FOR: | |
return data | |
domain = SCRAPING_DOMAIN_RE.findall(url)[0] | |
if SCRAPING_DOMAINS.has_key(domain): | |
last_scraped = SCRAPING_DOMAINS[domain] | |
elapsed = now - last_scraped | |
if elapsed < SCRAPING_REQUEST_STAGGER: | |
wait_period = (SCRAPING_REQUEST_STAGGER - elapsed) / 1000 | |
time.sleep(wait_period) | |
SCRAPING_DOMAINS[domain] = time.time() | |
data = SCRAPING_CONN.request(url,method) | |
SCRAPING_CACHE[key] = (data,now) | |
return data | |
def extract_story(s): | |
d = {} | |
d['link'] = s[0].findChildren()[0]['href'] | |
d['title'] = s[0].findChildren()[0].string | |
d['score'] = s[1].findChildren()[0].string | |
d['poster'] = s[1].findChildren()[1].string | |
try: | |
d['num_comments'] = int(s[1].findChildren()[2].string.split(" ")[0]) | |
except ValueError: | |
d['num_comments'] = 0 | |
d['time'] = " ".join(s[1].contents[-2].strip().split(" ")[:2]) | |
return d | |
def fetch_stories(): | |
page = fetch(u"http://news.ycombinator.com/") | |
soup = BeautifulSoup(page[1]) | |
titles = [x for x in soup.findAll('td','title') if x.findChildren()][:-1] | |
subtexts = soup.findAll('td','subtext') | |
stories = [extract_story(s) for s in zip(titles,subtexts)] | |
return stories | |
while True: | |
stories = fetch_stories() | |
stories.sort(lambda a,b: cmp(a['num_comments'],b['num_comments'])) | |
stories.reverse() | |
for s in stories: | |
print u"[%s cmnts] %s (%s) by %s, %s ago." % (s['num_comments'],s['title'],s['link'],s['poster'],s['time']) | |
print u"\n\n\n" | |
time.sleep(60 * 5) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment