Last active
August 19, 2024 13:27
-
-
Save pommedeterresautee/1a334b665710bec9bb65965f662c94c8 to your computer and use it in GitHub Desktop.
Divide Hugging Face Transformers training times by 2 or more with dynamic padding and uniform length batching
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# required by (\ SHELL COMMANDS \) | |
SHELL:=/bin/bash | |
VIRT_ENV_FOLDER = ~/.local/share/virtualenvs/xnli | |
SOURCE_VIRT_ENV = source $(VIRT_ENV_FOLDER)/bin/activate | |
.PHONY: train | |
train: | |
( \ | |
$(SOURCE_VIRT_ENV); \ | |
python trainer.py \ | |
--output_dir ./models/speed_camembert_max_len_128_fp16_dynamic_padding_smart_batching_batch_64_seed_321 \ | |
--overwrite_output_dir \ | |
--save_steps 0 \ | |
--seed 321 \ | |
--num_train_epochs 1 \ | |
--learning_rate 5e-5 \ | |
--per_gpu_train_batch_size 64 \ | |
--gradient_accumulation_steps 1 \ | |
--per_gpu_eval_batch_size 64 \ | |
--max_seq_len 128 \ | |
--dynamic_padding \ | |
--smart_batching \ | |
--fp16 \ | |
--evaluate_during_training ; \ | |
) | |
# --smart_batching | |
# --dynamic_padding | |
# --fp16 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import logging | |
import os | |
import random | |
import time | |
from dataclasses import dataclass, field | |
from typing import Dict, Optional | |
from typing import List | |
import numpy as np | |
import torch | |
from torch.utils.data.dataset import Dataset, IterableDataset | |
from torch.utils.tensorboard import SummaryWriter | |
from transformers import AutoTokenizer, EvalPrediction, Trainer, HfArgumentParser, TrainingArguments, \ | |
AutoModelForSequenceClassification, set_seed, AutoConfig | |
from transformers import PreTrainedTokenizer, DataCollator, PreTrainedModel | |
import wandb | |
set_seed(123) | |
label_codes = {"contradictory": 0, "contradiction": 0, "neutral": 1, "entailment": 2} | |
wandb.init(project="speed_training") | |
class MyTrainer(Trainer): | |
def _setup_wandb(self): | |
wandb.init(project="speed_training", | |
config=vars(self.args), | |
name=self.args.output_dir) | |
wandb.watch(self.model, log="gradients", log_freq=self.args.logging_steps) | |
@dataclass | |
class Example: | |
text_a: str | |
text_b: str | |
label: int | |
@dataclass | |
class Features: | |
input_ids: List[int] | |
attention_mask: List[int] | |
label: int | |
@dataclass | |
class ModelParameters: | |
max_seq_len: Optional[int] = field( | |
default=None, | |
metadata={"help": "max seq len"}, | |
) | |
dynamic_padding: bool = field( | |
default=False, | |
metadata={"help": "limit pad size at batch level"}, | |
) | |
smart_batching: bool = field( | |
default=False, | |
metadata={"help": "build batch of similar sizes"}, | |
) | |
dynamic_batch_size: bool = field( | |
default=False, | |
metadata={"help": "build batch of similar sizes"}, | |
) | |
class TextDataset(Dataset): | |
def __init__(self, tokenizer: PreTrainedTokenizer, pad_to_max_length: bool, max_len: int, | |
examples: List[Example]) -> None: | |
self.tokenizer = tokenizer | |
self.max_len = max_len | |
self.examples: List[Example] = examples | |
self.current = 0 | |
self.pad_to_max_length = pad_to_max_length | |
def encode(self, ex: Example) -> Features: | |
encode_dict = self.tokenizer.encode_plus(text=ex.text_a, | |
text_pair=ex.text_b, | |
add_special_tokens=True, | |
max_length=self.max_len, | |
pad_to_max_length=self.pad_to_max_length, | |
return_token_type_ids=False, | |
return_attention_mask=True, | |
return_overflowing_tokens=False, | |
return_special_tokens_mask=False, | |
) | |
return Features(input_ids=encode_dict["input_ids"], | |
attention_mask=encode_dict["attention_mask"], | |
label=ex.label) | |
def __getitem__(self, idx) -> Features: # Trainer doesn't support IterableDataset (define sampler) | |
if self.current == len(self.examples): | |
self.current = 0 | |
ex = self.examples[self.current] | |
self.current += 1 | |
return self.encode(ex=ex) | |
def __len__(self): | |
return len(self.examples) | |
def pad_seq(seq: List[int], max_batch_len: int, pad_value: int) -> List[int]: | |
return seq + (max_batch_len - len(seq)) * [pad_value] | |
@dataclass | |
class SmartCollator(DataCollator): | |
pad_token_id: int | |
def collate_batch(self, batch: List[Features]) -> Dict[str, torch.Tensor]: | |
batch_inputs = list() | |
batch_attention_masks = list() | |
labels = list() | |
max_size = max([len(ex.input_ids) for ex in batch]) | |
for item in batch: | |
batch_inputs += [pad_seq(item.input_ids, max_size, self.pad_token_id)] | |
batch_attention_masks += [pad_seq(item.attention_mask, max_size, 0)] | |
labels.append(item.label) | |
return {"input_ids": torch.tensor(batch_inputs, dtype=torch.long), | |
"attention_mask": torch.tensor(batch_attention_masks, dtype=torch.long), | |
"labels": torch.tensor(labels, dtype=torch.long) | |
} | |
def load_transformers_model(pretrained_model_name_or_path: str, | |
use_cuda: bool, | |
mixed_precision: bool) -> PreTrainedModel: | |
config = AutoConfig.from_pretrained(pretrained_model_name_or_path=pretrained_model_name_or_path, | |
num_labels=3) | |
model = AutoModelForSequenceClassification.from_pretrained( | |
pretrained_model_name_or_path=pretrained_model_name_or_path, | |
config=config) | |
if use_cuda and torch.cuda.is_available(): | |
device = torch.device('cuda') | |
model.to(device) | |
if mixed_precision: | |
try: | |
from apex import amp | |
model = amp.initialize(model, opt_level='O1') | |
except ImportError: | |
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") | |
return model | |
def load_train_data(path: str, sort: bool) -> List[Example]: | |
sentences = list() | |
with open(path) as f: | |
first = False | |
for line in f: | |
if not first: | |
first = True | |
continue | |
text_a, text_b, label = line.rstrip().split("\t") | |
lab = len(text_a) + len(text_b) | |
sentences.append((lab, Example(text_a=text_a, text_b=text_b, label=label_codes[label]))) | |
if sort: | |
sentences.sort(key=lambda x: x[0]) | |
return [e for (_, e) in sentences] | |
def load_dev_data(path: str) -> List[Example]: | |
sentences = list() | |
with open(path) as f: | |
for raw_line in f: | |
line = raw_line.split("\t") | |
if line[0] != "fr": | |
continue | |
text_a = line[6] | |
text_b = line[7] | |
label = line[1] | |
lab = len(text_a) + len(text_b) | |
sentences.append((lab, Example(text_a=text_a, text_b=text_b, label=label_codes[label]))) | |
sentences.sort(key=lambda x: x[0]) | |
return [e for (_, e) in sentences] | |
def build_batches(sentences: List[Example], batch_size: int) -> List[Example]: | |
batch_ordered_sentences = list() | |
while len(sentences) > 0: | |
to_take = min(batch_size, len(sentences)) | |
select = random.randint(0, len(sentences) - to_take) | |
batch_ordered_sentences += sentences[select:select + to_take] | |
del sentences[select:select + to_take] | |
return batch_ordered_sentences | |
if __name__ == "__main__": | |
parser = HfArgumentParser((TrainingArguments, ModelParameters)) | |
training_args, model_args = parser.parse_args_into_dataclasses() # type: (TrainingArguments, ModelParameters) | |
train_sentences = load_train_data(path="resources/XNLI-MT-1.0/multinli/multinli.train.fr.tsv", | |
sort=model_args.smart_batching) | |
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path="camembert-base") | |
if model_args.max_seq_len: | |
max_sequence_len = model_args.max_seq_len | |
else: | |
longest_sentence = max(train_sentences, key=len) | |
max_sequence_len = len(tokenizer.encode(text=longest_sentence.text_a, text_pair=longest_sentence.text_b)) | |
train_batches = build_batches(sentences=train_sentences, batch_size=training_args.per_gpu_train_batch_size) | |
valid_sentences = load_dev_data(path="resources/XNLI-1.0/xnli.test.tsv") | |
valid_batches = build_batches(sentences=valid_sentences, batch_size=training_args.per_gpu_eval_batch_size) | |
train_set = TextDataset(tokenizer=tokenizer, | |
max_len=max_sequence_len, | |
examples=train_batches, | |
pad_to_max_length=not model_args.dynamic_padding) | |
valid_set = TextDataset(tokenizer=tokenizer, | |
max_len=max_sequence_len, | |
examples=valid_batches, | |
pad_to_max_length=not model_args.dynamic_padding) | |
model = load_transformers_model(pretrained_model_name_or_path="camembert-base", | |
use_cuda=True, | |
mixed_precision=False) | |
def compute_metrics(p: EvalPrediction) -> Dict: | |
preds = np.argmax(p.predictions, axis=1) | |
return {"acc": (preds == p.label_ids).mean()} | |
trainer = MyTrainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_set, | |
# data_collator=IdentityCollator(pad_token_id=tokenizer.pad_token_id), | |
data_collator=SmartCollator(pad_token_id=tokenizer.pad_token_id), | |
tb_writer=SummaryWriter(log_dir='logs', flush_secs=10), | |
eval_dataset=valid_set, | |
compute_metrics=compute_metrics, | |
) | |
start_time = time.time() | |
trainer.train() | |
wandb.config.update(model_args) | |
wandb.config.update(training_args) | |
wandb.log({"training time": int((time.time() - start_time) / 60)}) | |
trainer.save_model() | |
trainer.evaluate() | |
logging.info("*** Evaluate ***") | |
result = trainer.evaluate() | |
wandb.log(result) | |
output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt") | |
with open(output_eval_file, "w") as writer: | |
logging.info("***** Eval results *****") | |
for key, value in result.items(): | |
logging.info(" %s = %s", key, value) | |
writer.write("%s = %s\n" % (key, value)) |
This code is very old and I think that most of these ideas are implemented in the lib
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
By the way, why TextDataset's
__get_item__
does not use idx parameter in any way?