Created
October 18, 2021 22:30
-
-
Save potatosalad/201045dbd7b52fd096c0d1a1b2174b5d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-module(ed25519ph). | |
-export([start/0]). | |
-export([ | |
prehash/1, | |
prehash_init/0, | |
prehash_update/2, | |
prehash_final/1, | |
sign/3, | |
sign_with_prehash/3, | |
verify/4, | |
verify_with_prehash/4 | |
]). | |
-record(ed25519ph_prehash_ctx, { | |
hash_state = undefined :: undefined | crypto:hash_state() | |
}). | |
-define(H(M), crypto:hash(sha512, M)). | |
-define(p, 57896044618658097711785492504343953926634992332820282019728792003956564819949). % 2^255 - 19 | |
-define(I, 19681161376707505956807079304988542015446066515923890162744021073123829784752). % expmod(2, (?p - 1) div 4, ?p) | |
-define(d, -4513249062541557337682894930092624173785641285191125241628941591882900924598840740). % (-121665) * ?inv(121666) | |
-define(inv(Z), expmod(Z, ?p - 2, ?p)). % $= z^{-1} \mod p$, for z != 0 | |
-define(By, 46316835694926478169428394003475163141307993866256225615783033603165251855960). % 4 * ?inv(5) | |
-define(Bx, 15112221349535400772501151409588531511454012693041857206046113283949847762202). % xrecover(?By) | |
-define(B, {?Bx, ?By, 1, 46827403850823179245072216630277197565144205554125654976674165829533817101731}). % {?Bx, ?By, 1, (?Bx * ?Bx) rem ?p} | |
-define(l, 7237005577332262213973186563042994240857116359379907606001950938285454250989). % ?math:intpow(2, 252) + 27742317777372353535851937790883648493 | |
start() -> | |
Secret = <<131,63,230,36,9,35,123,157,98,236,119,88,117,32,145,30,154,117,156,236,29,25,117,91,125,169,1,185,109,202,61,66>>, | |
Public = <<236,23,43,147,173,94,86,59,244,147,44,112,225,36,80,52,195,84,103,239,46,253,77,100,235,248,25,104,52,103,226,191>>, | |
Message = <<"abc">>, | |
Signature = <<152,167,2,34,240,184,18,26,169,211,15,129,61,104,63,128,158,70,43,70,156,127,248,118,57,73,155,185,78,109,174,65,49,248,80,66,70,60,42,53,90,32,3,208,98,173,245,170,161,11,140,97,230,54,6,42,170,209,28,42,38,8,52,6>>, | |
Context = <<>>, | |
Signature = sign(Context, Message, Secret), | |
true = verify(Context, Signature, Message, Public), | |
io:format("Test Vector passed!~n", []), | |
erlang:halt(0). | |
prehash(M) when is_binary(M) -> | |
crypto:hash(sha512, M). | |
prehash_init() -> | |
#ed25519ph_prehash_ctx{hash_state = crypto:hash_init(sha512)}. | |
prehash_update(#ed25519ph_prehash_ctx{hash_state = HashState}, M) when is_binary(M) -> | |
#ed25519ph_prehash_ctx{hash_state = crypto:hash_update(HashState, M)}. | |
prehash_final(#ed25519ph_prehash_ctx{hash_state = HashState}) -> | |
crypto:hash_final(HashState). | |
sign(C, M, Secret) when is_binary(C) andalso is_binary(M) andalso bit_size(Secret) =:= 256 -> | |
sign_with_prehash(C, prehash(M), Secret). | |
sign_with_prehash(C, PrehashCtx = #ed25519ph_prehash_ctx{}, Secret) when is_binary(C) andalso bit_size(Secret) =:= 256 -> | |
sign_with_prehash(C, prehash_final(PrehashCtx), Secret); | |
sign_with_prehash(C, PH, Secret) when is_binary(C) andalso bit_size(PH) =:= 512 andalso bit_size(Secret) =:= 256 -> | |
Dom2 = dom2(1, C), | |
<< HHead0:8/integer, HBody:30/binary, HFoot0:8/integer, Prefix:32/binary >> = ?H(Secret), | |
HHead = HHead0 band 248, | |
HFoot = (HFoot0 band 63) bor 64, | |
<< As:256/unsigned-little-integer-unit:1 >> = << HHead:8/integer, HBody/binary, HFoot:8/integer >>, | |
A = edwards_scalarmult_base(As), | |
<< Rs:512/unsigned-little-integer-unit:1 >> = ?H([Dom2, Prefix, PH]), | |
R = edwards_scalarmult_base(Rs), | |
<< K:512/unsigned-little-integer-unit:1 >> = ?H([Dom2, R, A, PH]), | |
S = mod(Rs + (mod(K, ?l) * As), ?l), | |
<< R/binary, S:256/unsigned-little-integer-unit:1 >>. | |
verify(C, Signature, M, Public) when is_binary(C) andalso bit_size(Signature) =:= 512 andalso is_binary(M) andalso bit_size(Public) =:= 256 -> | |
verify_with_prehash(C, Signature, prehash(M), Public). | |
verify_with_prehash(C, Signature, PrehashCtx = #ed25519ph_prehash_ctx{}, Public) when is_binary(C) andalso bit_size(Signature) =:= 512 andalso bit_size(Public) =:= 256 -> | |
verify_with_prehash(C, Signature, prehash_final(PrehashCtx), Public); | |
verify_with_prehash(C, Signature, PH, Public) when is_binary(C) andalso bit_size(Signature) =:= 512 andalso bit_size(PH) =:= 512 andalso bit_size(Public) =:= 256 -> | |
<< R:256/bitstring, S:256/unsigned-little-integer-unit:1 >> = Signature, | |
Dom2 = dom2(1, C), | |
A = edwards_decode_point(Public), | |
<< K:512/unsigned-little-integer-unit:1 >> = ?H([Dom2, R, Public, PH]), | |
edwards_equal(edwards_scalarmult(?B, S), edwards_add(edwards_decode_point(R), edwards_scalarmult(A, K))). | |
%% @private | |
dom2(X, Y) when is_integer(X) andalso X >= 0 andalso X =< 255 andalso is_binary(Y) andalso byte_size(Y) =< 255 -> | |
YLen = byte_size(Y), | |
<< | |
"SigEd25519 no Ed25519 collisions", | |
X:8/unsigned-integer, | |
YLen:8/unsigned-integer, | |
Y:YLen/binary | |
>>. | |
%% Ed25519 Operations | |
edwards_xrecover(Y) -> | |
YY = Y * Y, | |
A = (YY - 1) * ?inv((?d * YY) + 1), | |
X = expmod(A, (?p + 3) div 8, ?p), | |
case ((X * X) - A) rem ?p =:= 0 of | |
true -> % x^2 = a (mod p). Then x is a square root. | |
case X rem 2 of | |
0 -> | |
X; | |
_ -> | |
?p - X | |
end; | |
false -> | |
case ((X * X) + A) rem ?p =:= 0 of | |
true -> % x^2 = -a (mod p). Then 2^((p-1)/4) x is a square root. | |
Xi = (X * ?I) rem ?p, | |
case Xi rem 2 of | |
0 -> | |
Xi; | |
_ -> | |
?p - Xi | |
end; | |
false -> % a is not a square modulo p. | |
erlang:error(badarg) | |
end | |
end. | |
%% @private | |
edwards_add({X1, Y1, Z1, T1}, {X2, Y2, Z2, T2}) -> | |
A = ((Y1 - X1) * (Y2 - X2)) rem ?p, | |
B = ((Y1 + X1) * (Y2 + X2)) rem ?p, | |
C = (T1 * 2 * ?d * T2) rem ?p, | |
D = (Z1 * 2 * Z2) rem ?p, | |
E = B - A, | |
F = D - C, | |
G = D + C, | |
H = B + A, | |
X3 = E * F, | |
Y3 = G * H, | |
T3 = E * H, | |
Z3 = F * G, | |
{X3 rem ?p, Y3 rem ?p, Z3 rem ?p, T3 rem ?p}. | |
%% @private | |
edwards_double(P) -> | |
edwards_add(P, P). | |
%% @private | |
edwards_equal({X1, Y1, Z1, _T1}, {X2, Y2, Z2, _T2}) -> | |
Z1i = ?inv(Z1), | |
X1p = mod((X1 * Z1i), ?p), | |
Y1p = mod((Y1 * Z1i), ?p), | |
Z2i = ?inv(Z2), | |
X2p = mod((X2 * Z2i), ?p), | |
Y2p = mod((Y2 * Z2i), ?p), | |
{X1p, Y1p} =:= {X2p, Y2p}. | |
%% @private | |
edwards_decode_point(<< YpHead:(256 - 8)/bitstring, Xb:1, YpTail:7/bitstring >>) -> | |
<< Yp:256/unsigned-little-integer-unit:1 >> = << YpHead/bitstring, 0:1, YpTail/bitstring >>, | |
case Yp >= ?p of | |
true -> | |
erlang:error(badarg); | |
false -> | |
Xp = edwards_xrecover(Yp), | |
X = case Xp band 1 of | |
Xb -> | |
Xp; | |
_ -> | |
?p - Xp | |
end, | |
{X, Yp, 1, (X * Yp) rem ?p} | |
end. | |
%% @private | |
edwards_encode_point({X, Y, Z, _T}) -> | |
Zi = ?inv(Z), | |
Xp = mod((X * Zi), ?p), | |
Yp = mod((Y * Zi), ?p), | |
<< YpHead:(256 - 8)/bitstring, YpTail:8/integer >> = << Yp:256/unsigned-little-integer-unit:1 >>, | |
<< YpHead/bitstring, (YpTail bxor (16#80 * (Xp band 1))):8/integer >>. | |
%% @private | |
edwards_scalarmult(_P, 0) -> | |
{0, 1, 1, 0}; | |
edwards_scalarmult(P, E) -> | |
Q = edwards_scalarmult(P, E div 2), | |
QQ = edwards_double(Q), | |
case E band 1 of | |
0 -> | |
QQ; | |
1 -> | |
edwards_add(QQ, P) | |
end. | |
%% @private | |
edwards_scalarmult_base(E) when is_integer(E) -> | |
edwards_encode_point(edwards_scalarmult(?B, E)). | |
% MX = x25519_scalarmult_base(E), | |
% mx2ey(MX). | |
% %% @private | |
% x25519_scalarmult_base(K) when bit_size(K) =:= 256 -> | |
% {R, _} = crypto:generate_key(eddh, x25519, K), | |
% R. | |
% %% @private | |
% mx2ey(<<MX:256/unsigned-little-integer-unit:1>>) -> | |
% N0 = MX + 1, | |
% D0 = ?inv(N0), | |
% N1 = MX - 1, | |
% EY = mod(N1 * D0, ?p), | |
% <<EY::256/unsigned-little-integer-unit:1>>. | |
% A = X bsr 16, | |
% B = X band 16#FFFF, | |
% C = Y bsr 16, | |
% D = Y band 16#FFFF, | |
% DB = D * B, | |
% DA = D * A, | |
% CB = C * B, | |
% (DB + ((DA + CB) bsl 16)) band 16#FFFFFFFF. | |
%% Math | |
% @private | |
expmod(B, E, M) -> | |
expmod_fast(B, E, M). | |
% @private | |
expmod_fast(B, E, M) -> | |
(exprem_fast(B, E, M) + M) rem M. | |
% @private | |
exprem_fast(B, E, M) when B < 0 andalso E rem 2 =/= 0 -> | |
-exprem_fast(abs(B), E, M); | |
exprem_fast(B, E, M) when B < 0 -> | |
exprem_fast(abs(B), E, M); | |
exprem_fast(B, E, M) -> | |
crypto:bytes_to_integer(crypto:mod_pow(B, E, M)). | |
% @private | |
mod(B, M) -> | |
(B rem M + M) rem M. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment