Created
February 7, 2014 16:16
-
-
Save potetisensei/8866000 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#-*- encoding:utf-8 -*- | |
from base64 import b64encode, b64decode | |
from pickle import dumps, loads | |
from struct import pack, unpack | |
NONE = -1 | |
WHITE = 1 | |
RED = 2 | |
BLUE = 3 | |
GREEN = 4 | |
ORANGE = 5 | |
YELLOW = 6 | |
X = 0 | |
Y = 1 | |
Z = 2 | |
ROW = 32 | |
class ACube: | |
"""Like dice | |
___ | |
/ 1 /| | |
/ / | | |
| ̄ ̄ ̄| 3 | | |
| 2 | / | |
|___|/""" | |
def __init__(self, data="", color1=NONE, color2=NONE, color3=NONE, color4=NONE, color5=NONE, color6=NONE): | |
self.data = data | |
self.color1 = color1 | |
self.color2 = color2 | |
self.color3 = color3 | |
self.color4 = color4 | |
self.color5 = color5 | |
self.color6 = color6 | |
self.now_top = 1 | |
self.now_front = 2 | |
def turn_x(self, times): | |
reindex = {1:0, 2:1, 6:2, 5:3} | |
index = [1, 2, 6, 5] | |
self.now_top = index[(reindex[self.now_top] + times)%4] | |
self.now_front = index[(reindex[self.now_front] + times)%4] | |
def turn_y(self, times): | |
reindex = {1:0, 3:1, 6:2, 4:3} | |
index = [1, 3, 6, 4] | |
self.now_top = index[(reindex[self.now_top] - times)%4] | |
def turn_z(self, times): | |
reindex = {2:0, 3:1, 5:2, 4:3} | |
index = [2, 3, 5, 4] | |
self.now_front = index[(reindex[self.now_front] - times)%4] | |
def reverse_x(self, times): | |
pass | |
def reverse_y(self, times): | |
pass | |
def reverse_z(self, times): | |
pass | |
class Rubic: | |
def init(self): | |
self.state = [[[ACube() for k in range(ROW)] for j in range(ROW)] for i in range(ROW)] | |
for i in range(ROW): | |
for j in range(ROW): | |
self.state[0][i][j].color1 = WHITE | |
self.state[ROW-1][i][j].color6 = YELLOW | |
self.state[i][0][j].color2 = RED | |
self.state[i][ROW-1][j].color5 = ORANGE | |
self.state[i][j][0].color4 = GREEN | |
self.state[i][j][ROW-1].color3 = BLUE | |
def rotate(self, code): | |
calc_funcs = [lambda x,y: (x,y), | |
lambda x,y: (ROW-y-1, x), | |
lambda x,y: (ROW-x-1, ROW-y-1), | |
lambda x,y: (y, ROW-x-1)] | |
flag = [[None for j in range(ROW)] for i in range(ROW)] | |
axis, others = divmod(code, 4*ROW) | |
index, times = divmod(others, 4) | |
if axis == X: | |
for i in range(ROW): | |
for j in range(ROW): | |
self.state[i][j][index].turn_x(times) | |
i2, j2 = calc_funcs[times](i, j) | |
if flag[i2][j2]: | |
self.state[i2][j2][index] = self.state[i][j][index] | |
self.state[i][j][index] = flag[i2][j2] | |
else : | |
flag[i][j] = self.state[i][j][index] | |
elif axis == Y: | |
for i in range(ROW): | |
for j in range(ROW): | |
self.state[i][index][j].turn_y(times) | |
i2, j2 = calc_funcs[times](i, j) | |
if flag[i2][j2]: | |
self.state[i2][index][j2] = self.state[i][index][j] | |
self.state[i][index][j] = flag[i2][j2] | |
else : | |
flag[i][j] = self.state[i][index][j] | |
elif axis == Z: | |
for i in range(ROW): | |
for j in range(ROW): | |
self.state[index][i][j].turn_z(times) | |
i2, j2 = calc_funcs[times](i, j) | |
if flag[i2][j2]: | |
self.state[index][i2][j2] = self.state[index][i][j] | |
self.state[index][i][j] = flag[i2][j2] | |
else : | |
flag[i][j] = self.state[index][i][j] | |
else : | |
return -1 | |
def reverse(self, code): | |
calc_funcs = [lambda x,y: (x,y), | |
lambda x,y: (ROW-y-1, x), | |
lambda x,y: (ROW-x-1, ROW-y-1), | |
lambda x,y: (y, ROW-x-1)] | |
flag = [[None for j in range(ROW)] for i in range(ROW)] | |
axis, others = divmod(code, 4*ROW) | |
index, times = divmod(others, 4) | |
if axis == X: | |
for i in range(ROW): | |
for j in range(ROW): | |
self.state[i][j][index].reverse_x(times) | |
i2, j2 = calc_funcs[times](i, j) | |
if flag[i2][j2]: | |
self.state[i2][j2][index] = self.state[i][j][index] | |
self.state[i][j][index] = flag[i2][j2] | |
else : | |
flag[i][j] = self.state[i][j][index] | |
elif axis == Y: | |
for i in range(ROW): | |
for j in range(ROW): | |
self.state[i][index][j].reverse_y(times) | |
i2, j2 = calc_funcs[times](i, j) | |
if flag[i2][j2]: | |
self.state[i2][index][j2] = self.state[i][index][j] | |
self.state[i][index][j] = flag[i2][j2] | |
else : | |
flag[i][j] = self.state[i][index][j] | |
elif axis == Z: | |
for i in range(ROW): | |
for j in range(ROW): | |
self.state[index][i][j].reverse_z(times) | |
i2, j2 = calc_funcs[times](i, j) | |
if flag[i2][j2]: | |
self.state[index][i2][j2] = self.state[index][i][j] | |
self.state[index][i][j] = flag[i2][j2] | |
else : | |
flag[i][j] = self.state[index][i][j] | |
else : | |
return -1 | |
def rotate_all(self, codes): | |
for i in codes: | |
if self.rotate(i) == -1: | |
return -1 | |
def reverse_all(self, codes): | |
for i in codes[::-1]: | |
if self.reverse(i) == -1: | |
return -1 | |
def set_data(self, data): | |
for i in range(ROW): | |
for j in range(ROW): | |
for k in range(ROW): | |
if len(data) <= i * (ROW**2) + j * ROW + k: | |
return | |
self.state[i][j][k].data = data[i * (ROW**2) + j * ROW + k] | |
def read_data(self, length): | |
ret = "" | |
for i in range(ROW): | |
for j in range(ROW): | |
for k in range(ROW): | |
if length <= i * (ROW**2) + j * ROW + k: | |
return ret | |
if not self.state[i][j][k].data: | |
return "" | |
ret += self.state[i][j][k].data | |
def encrypt(self, plain, key, iv=[]): | |
encoded = b64encode(plain) | |
length = len(encoded) | |
if length > ROW**3: | |
return "" | |
self.init() | |
if self.rotate_all(iv) == -1: | |
return "" | |
self.set_data(encoded) | |
if self.rotate_all(key) == -1: | |
return "" | |
return pack("<I", length) + dumps(self.state) | |
def decrypt(self, enc, key): | |
length = unpack("<I", enc[:4])[0] | |
if length > ROW**3: | |
return "" | |
del self.state | |
self.state = loads(enc[4:]) | |
if self.reverse_all(key) == -1: | |
return "" | |
return b64decode(self.read_data(length)) | |
def main(): | |
flag = open("flag.txt").read() | |
key = eval(open("key.txt").read()) # type(key) => list | |
iv = eval(open("iv.txt").read()) # type(iv) => list | |
cipher = Rubic() | |
enc = cipher.encrypt(flag, key, iv) | |
open("flag.enc", "wb").write(enc) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment