Created
November 26, 2012 20:48
-
-
Save pprett/4150519 to your computer and use it in GitHub Desktop.
Benchmark sklearn's SGDClassifier on RCV1-ccat dataset.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Benchmark sklearn's SGDClassifier on RCV1-ccat dataset. | |
So generate the input files see http://leon.bottou.org/projects/sgd . | |
Results | |
------- | |
ACC: 0.9479 | |
AUC: 0.9476 | |
3 loops, best of 1: 1.21 s per loop | |
""" | |
import svmlight_loader | |
from sklearn.linear_model import SGDClassifier | |
from sklearn.utils import shuffle | |
from sklearn import metrics | |
X, y = svmlight_loader.load_svmlight_file('../../corpora/rcv1-ccat/train.dat', buffer_mb=500) | |
X_test, y_test = svmlight_loader.load_svmlight_file('../../corpora/rcv1-ccat/test.dat', n_features=X.shape[1], buffer_mb=500) | |
X_train, y_train = shuffle(X, y, random_state=0) | |
del X | |
del y | |
clf = SGDClassifier(n_iter=5, alpha=0.00001) | |
clf.fit(X_train, y_train) | |
y_pred = clf.predict(X_test) | |
print "ACC: %.4f" % metrics.zero_one_score(y_test, y_pred) | |
print "AUC: %.4f" % metrics.auc_score(y_test, y_pred) | |
print "%timeit clf.fit(X_train, y_train)" | |
print "%timeit clf.score(X_test, y_test)" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment