Last active
June 21, 2019 19:23
-
-
Save prakashjayy/221571cf036179ed5343432eca16e72b to your computer and use it in GitHub Desktop.
Transfer Learning using Keras
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras import applications | |
from keras.preprocessing.image import ImageDataGenerator | |
from keras import optimizers | |
from keras.models import Sequential, Model | |
from keras.layers import Dropout, Flatten, Dense, GlobalAveragePooling2D | |
from keras import backend as k | |
from keras.callbacks import ModelCheckpoint, LearningRateScheduler, TensorBoard, EarlyStopping | |
img_width, img_height = 256, 256 | |
train_data_dir = "data/train" | |
validation_data_dir = "data/val" | |
nb_train_samples = 4125 | |
nb_validation_samples = 466 | |
batch_size = 16 | |
epochs = 50 | |
model = applications.VGG19(weights = "imagenet", include_top=False, input_shape = (img_width, img_height, 3)) | |
""" | |
Layer (type) Output Shape Param # | |
================================================================= | |
input_1 (InputLayer) (None, 256, 256, 3) 0 | |
_________________________________________________________________ | |
block1_conv1 (Conv2D) (None, 256, 256, 64) 1792 | |
_________________________________________________________________ | |
block1_conv2 (Conv2D) (None, 256, 256, 64) 36928 | |
_________________________________________________________________ | |
block1_pool (MaxPooling2D) (None, 128, 128, 64) 0 | |
_________________________________________________________________ | |
block2_conv1 (Conv2D) (None, 128, 128, 128) 73856 | |
_________________________________________________________________ | |
block2_conv2 (Conv2D) (None, 128, 128, 128) 147584 | |
_________________________________________________________________ | |
block2_pool (MaxPooling2D) (None, 64, 64, 128) 0 | |
_________________________________________________________________ | |
block3_conv1 (Conv2D) (None, 64, 64, 256) 295168 | |
_________________________________________________________________ | |
block3_conv2 (Conv2D) (None, 64, 64, 256) 590080 | |
_________________________________________________________________ | |
block3_conv3 (Conv2D) (None, 64, 64, 256) 590080 | |
_________________________________________________________________ | |
block3_conv4 (Conv2D) (None, 64, 64, 256) 590080 | |
_________________________________________________________________ | |
block3_pool (MaxPooling2D) (None, 32, 32, 256) 0 | |
_________________________________________________________________ | |
block4_conv1 (Conv2D) (None, 32, 32, 512) 1180160 | |
_________________________________________________________________ | |
block4_conv2 (Conv2D) (None, 32, 32, 512) 2359808 | |
_________________________________________________________________ | |
block4_conv3 (Conv2D) (None, 32, 32, 512) 2359808 | |
_________________________________________________________________ | |
block4_conv4 (Conv2D) (None, 32, 32, 512) 2359808 | |
_________________________________________________________________ | |
block4_pool (MaxPooling2D) (None, 16, 16, 512) 0 | |
_________________________________________________________________ | |
block5_conv1 (Conv2D) (None, 16, 16, 512) 2359808 | |
_________________________________________________________________ | |
block5_conv2 (Conv2D) (None, 16, 16, 512) 2359808 | |
_________________________________________________________________ | |
block5_conv3 (Conv2D) (None, 16, 16, 512) 2359808 | |
_________________________________________________________________ | |
block5_conv4 (Conv2D) (None, 16, 16, 512) 2359808 | |
_________________________________________________________________ | |
block5_pool (MaxPooling2D) (None, 8, 8, 512) 0 | |
================================================================= | |
Total params: 20,024,384.0 | |
Trainable params: 20,024,384.0 | |
Non-trainable params: 0.0 | |
""" | |
# Freeze the layers which you don't want to train. Here I am freezing the first 5 layers. | |
for layer in model.layers[:5]: | |
layer.trainable = False | |
#Adding custom Layers | |
x = model.output | |
x = Flatten()(x) | |
x = Dense(1024, activation="relu")(x) | |
x = Dropout(0.5)(x) | |
x = Dense(1024, activation="relu")(x) | |
predictions = Dense(16, activation="softmax")(x) | |
# creating the final model | |
model_final = Model(input = model.input, output = predictions) | |
# compile the model | |
model_final.compile(loss = "categorical_crossentropy", optimizer = optimizers.SGD(lr=0.0001, momentum=0.9), metrics=["accuracy"]) | |
# Initiate the train and test generators with data Augumentation | |
train_datagen = ImageDataGenerator( | |
rescale = 1./255, | |
horizontal_flip = True, | |
fill_mode = "nearest", | |
zoom_range = 0.3, | |
width_shift_range = 0.3, | |
height_shift_range=0.3, | |
rotation_range=30) | |
test_datagen = ImageDataGenerator( | |
rescale = 1./255, | |
horizontal_flip = True, | |
fill_mode = "nearest", | |
zoom_range = 0.3, | |
width_shift_range = 0.3, | |
height_shift_range=0.3, | |
rotation_range=30) | |
train_generator = train_datagen.flow_from_directory( | |
train_data_dir, | |
target_size = (img_height, img_width), | |
batch_size = batch_size, | |
class_mode = "categorical") | |
validation_generator = test_datagen.flow_from_directory( | |
validation_data_dir, | |
target_size = (img_height, img_width), | |
class_mode = "categorical") | |
# Save the model according to the conditions | |
checkpoint = ModelCheckpoint("vgg16_1.h5", monitor='val_acc', verbose=1, save_best_only=True, save_weights_only=False, mode='auto', period=1) | |
early = EarlyStopping(monitor='val_acc', min_delta=0, patience=10, verbose=1, mode='auto') | |
# Train the model | |
model_final.fit_generator( | |
train_generator, | |
samples_per_epoch = nb_train_samples, | |
epochs = epochs, | |
validation_data = validation_generator, | |
nb_val_samples = nb_validation_samples, | |
callbacks = [checkpoint, early]) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I ran this code using jupyter via Docker and it downloaded, but I found some error :
FileNotFoundError: [Errno 2] No such file or directory: 'data/train'
as specified intrain_data_dir = "data/train" validation_data_dir = "data/val"
I don't know exactly where the downloaded file is located?
here is my path:
!jupyter --paths