Created
November 15, 2015 20:23
-
-
Save prakhar1989/a49bd385053384137417 to your computer and use it in GitHub Desktop.
K means in Go
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package main | |
import ( | |
"image" | |
"image/color" | |
"image/png" | |
"log" | |
"math" | |
"math/rand" | |
"os" | |
"strconv" | |
) | |
func norm(c1 color.Color, c2 color.Color) float64 { | |
r1, g1, b1, _ := c1.RGBA() | |
r2, g2, b2, _ := c2.RGBA() | |
dist := (r1-r2)*(r1-r2) + (g1-g2)*(g1-g2) + (b1-b2)*(b1-b2) | |
return math.Sqrt(float64(dist)) | |
} | |
func getMin(nums []float64) (float64, int) { | |
minIndex, minValue := 0, nums[0] | |
for i := 1; i < len(nums); i++ { | |
if nums[i] < minValue { | |
minValue = nums[i] | |
minIndex = i | |
} | |
} | |
return minValue, minIndex | |
} | |
func main() { | |
// set configuration here | |
const imageFilePath string = "./tree.png" | |
if len(os.Args) != 3 { | |
log.Fatal("USAGE: k-means <clusters> <number of iterations>") | |
} | |
K, err := strconv.Atoi(os.Args[1]) | |
if err != nil { | |
log.Fatal("USAGE: k-means <clusters> <number of iterations>") | |
} | |
maxIter, err := strconv.Atoi(os.Args[2]) | |
if err != nil { | |
log.Fatal("USAGE: k-means <clusters> <number of iterations>") | |
} | |
// reading the image | |
file, err := os.Open(imageFilePath) | |
if err != nil { | |
log.Fatal(err) | |
} | |
defer file.Close() | |
img, err := png.Decode(file) | |
if err != nil { | |
log.Fatal(err) | |
} | |
// setting the max size | |
var N int = img.Bounds().Max.X | |
// create the centroid array | |
centroids := make([]color.Color, K) | |
for i := 0; i < K; i++ { | |
centroids[i] = img.At(rand.Intn(N), rand.Intn(N)) | |
} | |
for iter := 0; iter < maxIter; iter++ { | |
// initializing cluster infos | |
clusterInfo := make([][]int, N) | |
for i := 0; i < N; i++ { | |
clusterInfo[i] = make([]int, N) | |
} | |
// calculate distances | |
for i := 0; i < N; i++ { | |
for j := 0; j < N; j++ { | |
distances := make([]float64, K) | |
for k := 0; k < K; k++ { | |
distances[k] = norm(img.At(i, j), centroids[k]) | |
} | |
_, index := getMin(distances) | |
clusterInfo[i][j] = index | |
} | |
} | |
// finding new centroid means | |
newCentroids := make([][]uint32, K) | |
for i := 0; i < K; i++ { | |
newCentroids[i] = make([]uint32, 3) | |
} | |
pointsInCluster := make([]uint32, K) | |
for k := 0; k < K; k++ { | |
for i := 0; i < N; i++ { | |
for j := 0; j < N; j++ { | |
if clusterInfo[i][j] == k { | |
pointsInCluster[k] += 1 | |
r, g, b, _ := img.At(i, j).RGBA() | |
newCentroids[k][0] += uint32(r) | |
newCentroids[k][1] += uint32(g) | |
newCentroids[k][2] += uint32(b) | |
} | |
} | |
} | |
} | |
for k := 0; k < K; k++ { | |
if pointsInCluster[k] > 0 { | |
r := newCentroids[k][0] / pointsInCluster[k] | |
g := newCentroids[k][1] / pointsInCluster[k] | |
b := newCentroids[k][2] / pointsInCluster[k] | |
centroids[k] = color.RGBA64{uint16(r), uint16(g), uint16(b), 255} | |
} | |
} | |
// creating a new image | |
newImg := image.NewRGBA(image.Rect(0, 0, N, N)) | |
for i := 0; i < N; i++ { | |
for j := 0; j < N; j++ { | |
r, g, b, _ := centroids[clusterInfo[i][j]].RGBA() | |
c := color.RGBA{uint8(r / 255), uint8(g / 255), uint8(b / 255), 255} | |
newImg.Set(i, j, c) | |
} | |
} | |
if iter == maxIter-1 { | |
filename := "img-" + strconv.Itoa(maxIter) + ".png" | |
out_file, err := os.Create(filename) | |
if err != nil { | |
log.Fatal(err) | |
} | |
defer out_file.Close() | |
log.Print("Saving image to:", filename) | |
png.Encode(out_file, newImg) | |
} | |
} | |
} |
Author
prakhar1989
commented
Nov 15, 2015
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment