Skip to content

Instantly share code, notes, and snippets.

@pranjalAI
Created October 26, 2020 11:51
Show Gist options
  • Save pranjalAI/1441149bdcee4d6c4d3a8600e3d62f72 to your computer and use it in GitHub Desktop.
Save pranjalAI/1441149bdcee4d6c4d3a8600e3d62f72 to your computer and use it in GitHub Desktop.
def build_generator(seed_size, channels):
model = Sequential()
model.add(Dense(4*4*256,activation="relu",input_dim=seed_size))
model.add(Reshape((4,4,256)))
model.add(UpSampling2D())
model.add(Conv2D(256,kernel_size=3,padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
model.add(UpSampling2D())
model.add(Conv2D(256,kernel_size=3,padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
# Output resolution, additional upsampling
model.add(UpSampling2D())
model.add(Conv2D(128,kernel_size=3,padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
if GENERATE_RES>1:
model.add(UpSampling2D(size=(GENERATE_RES,GENERATE_RES)))
model.add(Conv2D(128,kernel_size=3,padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
# Final CNN layer
model.add(Conv2D(channels,kernel_size=3,padding="same"))
model.add(Activation("tanh"))
return model
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment