Skip to content

Instantly share code, notes, and snippets.

@pranjalAI
Created September 8, 2020 13:35
Show Gist options
  • Save pranjalAI/3849e3c6b4c574d8eac7088e16c945ed to your computer and use it in GitHub Desktop.
Save pranjalAI/3849e3c6b4c574d8eac7088e16c945ed to your computer and use it in GitHub Desktop.
model=Sequential()
model.add(Conv2D(16,kernel_size=(3,3), activation="relu" ,input_shape=IMAGE_SIZE + [3], padding='same'))
model.add(Conv2D(32, kernel_size=(3,3), activation="relu",padding='same'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.30))
model.add(Conv2D(64, kernel_size=(3,3), activation="relu",padding='same'))
#model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.35))
model.add(Conv2D(128, kernel_size=(3,3), activation="relu",padding='same'))
#model.add(MaxPooling2D(pool_size=(2,2)))
model.add(BatchNormalization())
model.add(Dropout(0.45))
model.add(Flatten())
model.add(Dense(64, activation="relu"))
model.add(Dense(num_classes, activation="softmax"))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment