Skip to content

Instantly share code, notes, and snippets.

@pranjalAI
Created September 3, 2020 15:28
Show Gist options
  • Save pranjalAI/4a0df23e04c82e034805cfdaa618bae6 to your computer and use it in GitHub Desktop.
Save pranjalAI/4a0df23e04c82e034805cfdaa618bae6 to your computer and use it in GitHub Desktop.
Passing detected item to webpage
from __future__ import division, print_function
# coding=utf-8
import sys
import os
import glob
import re, glob, os,cv2
import numpy as np
import pandas as pd
import detect_object
from shutil import copyfile
import shutil
from distutils.dir_util import copy_tree
# Flask utils
from flask import Flask, redirect, url_for, request, render_template
from werkzeug.utils import secure_filename
from gevent.pywsgi import WSGIServer
# Define a flask app
app = Flask(__name__)
for f in os.listdir("static\\similar_images\\"):
os.remove("static\\similar_images\\"+f)
print('Model loaded. Check http://127.0.0.1:5000/')
@app.route('/', methods=['GET'])
def index():
# Main page
return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
if request.method == 'POST':
# Get the file from post request
f = request.files['file']
# Save the file to ./uploads
basepath = os.path.dirname(__file__)
file_path = os.path.join(
basepath, 'uploads', secure_filename(f.filename))
f.save(file_path)
# Make prediction
get_detected_object=detect_object(file_path)
return get_detected_object
return None
if __name__ == '__main__':
app.run(debug=True)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment