Created
April 12, 2021 13:49
-
-
Save pranjalAI/b884a340d07a8c8e981df83c6f6139b9 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import fastai | |
from fastai.vision import * | |
from fastai.utils.mem import * | |
from fastai.vision import open_image, load_learner, image, torch | |
import numpy as np | |
import urllib.request | |
import PIL.Image | |
from io import BytesIO | |
import torchvision.transforms as T | |
from PIL import Image | |
import requests | |
from io import BytesIO | |
import fastai | |
from fastai.vision import * | |
from fastai.utils.mem import * | |
from fastai.vision import open_image, load_learner, image, torch | |
import numpy as np | |
import urllib.request | |
import PIL.Image | |
from io import BytesIO | |
import torchvision.transforms as T | |
class FeatureLoss(nn.Module): | |
def __init__(self, m_feat, layer_ids, layer_wgts): | |
super().__init__() | |
self.m_feat = m_feat | |
self.loss_features = [self.m_feat[i] for i in layer_ids] | |
self.hooks = hook_outputs(self.loss_features, detach=False) | |
self.wgts = layer_wgts | |
self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids)) | |
] + [f'gram_{i}' for i in range(len(layer_ids))] | |
def make_features(self, x, clone=False): | |
self.m_feat(x) | |
return [(o.clone() if clone else o) for o in self.hooks.stored] | |
def forward(self, input, target): | |
out_feat = self.make_features(target, clone=True) | |
in_feat = self.make_features(input) | |
self.feat_losses = [base_loss(input,target)] | |
self.feat_losses += [base_loss(f_in, f_out)*w | |
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] | |
self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3 | |
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] | |
self.metrics = dict(zip(self.metric_names, self.feat_losses)) | |
return sum(self.feat_losses) | |
def __del__(self): self.hooks.remove() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment