Last active
May 3, 2018 06:31
-
-
Save pranz24/ba731e65e1b64bf3710159aa75736f90 to your computer and use it in GitHub Desktop.
Solving_Acrobot-v1 using simple actor-critic
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
small neural network trained using actor-critic in Pytorch | |
References: | |
David Silver's Lecture 7-Policy Gradient Methods: https://www.youtube.com/watch?v=KHZVXao4qXs&t=46s | |
Actor-critic example in Pytorch: https://github.com/pytorch/examples/blob/master/reinforcement_learning/actor_critic.py | |
I think a higher score can be achieved by running the algorithm for more number of episodes(>80000) | |
""" | |
import argparse | |
import gym | |
import numpy as np | |
from itertools import count | |
from collections import namedtuple | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.optim as optim | |
import torch.autograd as autograd | |
from torch.autograd import Variable | |
parser = argparse.ArgumentParser(description='PyTorch actor-critic for acrobot') | |
parser.add_argument('--gamma', type=float, default=0.99, metavar='G', | |
help='discount factor (default: 0.99)') | |
parser.add_argument('--seed', type=int, default=543, metavar='N', | |
help='random seed (default: 1)') | |
parser.add_argument('--render', action='store_true', | |
help='render the environment') | |
parser.add_argument('--log-interval', type=int, default=10, metavar='N', | |
help='interval between training status logs (default: 10)') | |
args = parser.parse_args() | |
env = gym.make('Acrobot-v1') | |
print(env.observation_space) | |
print(env.action_space) | |
env.seed(args.seed) | |
torch.manual_seed(args.seed) | |
SavedAction = namedtuple('SavedAction', ['action', 'value']) | |
class Policy(nn.Module): | |
def __init__(self): | |
super(Policy, self).__init__() | |
self.affine1 = nn.Linear(6, 18) | |
self.affine2 = nn.Linear(18, 36) | |
self.affine3 = nn.Linear(36, 18) | |
self.action_head = nn.Linear(18, 3) | |
self.value_head = nn.Linear(18, 1) | |
self.saved_actions = [] | |
self.rewards = [] | |
def forward(self, x): | |
x = F.leaky_relu(self.affine1(x)) | |
x = F.leaky_relu(self.affine2(x)) | |
x = F.leaky_relu(self.affine3(x)) | |
action_scores = self.action_head(x) | |
state_values = self.value_head(x) | |
return F.softmax(action_scores), state_values | |
model = Policy() | |
optimizer = optim.Adam(model.parameters(), lr=0.002) | |
def select_action(state): | |
state = torch.from_numpy(state).float().unsqueeze(0) | |
probs, state_value = model(Variable(state)) | |
action = probs.multinomial() | |
model.saved_actions.append(SavedAction(action, state_value)) | |
return action.data | |
outdir = '/tmp/Acrobot-results' | |
env = gym.wrappers.Monitor(env, outdir, force=True) | |
def finish_episode(): | |
R = 0 | |
saved_actions = model.saved_actions | |
value_loss = 0 | |
rewards = [] | |
for r in model.rewards[::-1]: | |
R = r + args.gamma * R | |
rewards.insert(0, R) | |
rewards = torch.Tensor(rewards) | |
rewards = (rewards - rewards.mean()) / (rewards.std() + np.finfo(np.float32).eps) | |
for (action, value), r in zip(saved_actions, rewards): | |
reward = r - value.data[0,0] | |
action.reinforce(reward) | |
value_loss += F.smooth_l1_loss(value, Variable(torch.Tensor([r]))) | |
optimizer.zero_grad() | |
final_nodes = [value_loss] + list(map(lambda p: p.action, saved_actions)) | |
gradients = [torch.ones(1)] + [None] * len(saved_actions) | |
autograd.backward(final_nodes, gradients) | |
optimizer.step() | |
del model.rewards[:] | |
del model.saved_actions[:] | |
running_reward = 10 | |
for episode_no in count(1): | |
state = env.reset() | |
for t in range(1000): | |
action = select_action(state) | |
state, reward, done, _ = env.step(action[0,0]) | |
if args.render: | |
env.render() | |
model.rewards.append(reward) | |
if done: | |
break | |
running_reward = running_reward * 0.99 + t * 0.01 | |
finish_episode() | |
if episode_no % args.log_interval == 0: | |
print('Episode {}\tLast length: {:5d}\tAverage length: {:.2f}'.format( | |
episode_no, t, running_reward)) | |
if episode_no > 80000: | |
print("Running reward is now {} and " | |
"the last episode runs to {} time steps!".format(running_reward, t)) | |
env.close() | |
break |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment