-
-
Save praveen-symphony/bb4d6da83e6b9542a46c9eafe2b14e7d to your computer and use it in GitHub Desktop.
To enable IDE (PyCharm) syntax support for Apache Spark, adopted from http://www.abisen.com/spark-from-ipython-notebook.html
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/public/spark-0.9.1/bin/pyspark | |
import os | |
import sys | |
# Set the path for spark installation | |
# this is the path where you have built spark using sbt/sbt assembly | |
os.environ['SPARK_HOME'] = "/public/spark-0.9.1" | |
# os.environ['SPARK_HOME'] = "/home/jie/d2/spark-0.9.1" | |
# Append to PYTHONPATH so that pyspark could be found | |
sys.path.append("/public/spark-0.9.1/python") | |
# sys.path.append("/home/jie/d2/spark-0.9.1/python") | |
# Now we are ready to import Spark Modules | |
try: | |
from pyspark import SparkContext | |
from pyspark import SparkConf | |
except ImportError as e: | |
print ("Error importing Spark Modules", e) | |
sys.exit(1) | |
import numpy as np | |
from sklearn.cross_validation import train_test_split, Bootstrap | |
from sklearn.datasets import make_classification | |
from sklearn.metrics import accuracy_score | |
from sklearn.tree import DecisionTreeClassifier | |
from sklearn import datasets, svm, pipeline | |
from sklearn.kernel_approximation import RBFSampler | |
from sklearn.linear_model import SGDClassifier | |
if __name__ =='__main__': | |
conf=SparkConf() | |
conf.setMaster("spark://172.18.109.87:7077") | |
# conf.setMaster("local") | |
conf.setAppName("spark_svm") | |
conf.set("spark.executor.memory", "12g") | |
sc = SparkContext(conf=conf) | |
X, y = make_classification(n_samples=10000, n_features=30, n_classes=2) | |
X_train, X_test, y_train, y_test = train_test_split(X, y) | |
samples = sc.parallelize(Bootstrap(y.size)) | |
feature_map_fourier = RBFSampler(gamma=.2, random_state=1) | |
fourier_approx_svm = pipeline.Pipeline([("feature_map", feature_map_fourier), | |
("svm", SGDClassifier())]) | |
fourier_approx_svm.set_params(feature_map__n_components=700) | |
results = samples.map(lambda (index, _): | |
fourier_approx_svm.fit(X[index], y[index]).score(X_test, y_test)) \ | |
.reduce(lambda x,y: x+y) | |
final_results = results/ len(Bootstrap(y.size)) | |
print(final_results) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment