Skip to content

Instantly share code, notes, and snippets.

@praveen-symphony
Forked from bigaidream/spark_ide.py
Created September 21, 2016 23:54
Show Gist options
  • Save praveen-symphony/bb4d6da83e6b9542a46c9eafe2b14e7d to your computer and use it in GitHub Desktop.
Save praveen-symphony/bb4d6da83e6b9542a46c9eafe2b14e7d to your computer and use it in GitHub Desktop.
To enable IDE (PyCharm) syntax support for Apache Spark, adopted from http://www.abisen.com/spark-from-ipython-notebook.html
#!/public/spark-0.9.1/bin/pyspark
import os
import sys
# Set the path for spark installation
# this is the path where you have built spark using sbt/sbt assembly
os.environ['SPARK_HOME'] = "/public/spark-0.9.1"
# os.environ['SPARK_HOME'] = "/home/jie/d2/spark-0.9.1"
# Append to PYTHONPATH so that pyspark could be found
sys.path.append("/public/spark-0.9.1/python")
# sys.path.append("/home/jie/d2/spark-0.9.1/python")
# Now we are ready to import Spark Modules
try:
from pyspark import SparkContext
from pyspark import SparkConf
except ImportError as e:
print ("Error importing Spark Modules", e)
sys.exit(1)
import numpy as np
from sklearn.cross_validation import train_test_split, Bootstrap
from sklearn.datasets import make_classification
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier
from sklearn import datasets, svm, pipeline
from sklearn.kernel_approximation import RBFSampler
from sklearn.linear_model import SGDClassifier
if __name__ =='__main__':
conf=SparkConf()
conf.setMaster("spark://172.18.109.87:7077")
# conf.setMaster("local")
conf.setAppName("spark_svm")
conf.set("spark.executor.memory", "12g")
sc = SparkContext(conf=conf)
X, y = make_classification(n_samples=10000, n_features=30, n_classes=2)
X_train, X_test, y_train, y_test = train_test_split(X, y)
samples = sc.parallelize(Bootstrap(y.size))
feature_map_fourier = RBFSampler(gamma=.2, random_state=1)
fourier_approx_svm = pipeline.Pipeline([("feature_map", feature_map_fourier),
("svm", SGDClassifier())])
fourier_approx_svm.set_params(feature_map__n_components=700)
results = samples.map(lambda (index, _):
fourier_approx_svm.fit(X[index], y[index]).score(X_test, y_test)) \
.reduce(lambda x,y: x+y)
final_results = results/ len(Bootstrap(y.size))
print(final_results)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment