-
The following steps show how to run the MONAILabel server on Windows via Docker. I have tested these steps on the following software versions:
Name Version Terminal Command Windows Microsoft Windows 11 Pro for Workstations Win Command Prompt systeminfo | findstr /B /C:"OS Name" /B /C:"OS Version
Nvidia Driver 527.56 Win Command Prompt nvidia-smi --query-gpu=driver_version --format=csv
Nvidia CUDA Driver API 12.0 Win Command Prompt nvidia-smi
Nvidia GPU NVIDIA GeForce RTX 2080 Ti Win Command Prompt nvidia-smi --query-gpu=driver_version --format=csv
WSL 1.0.3.0 Win Command Prompt wsl --version
WSL Ubuntu 2 Win Command Prompt wsl -l -v
WSL Ubuntu Release 22.04 (Jammy) WSL Ubuntu Terminal lsb_release -a
WSL Ubuntu Kernel 5.15.79.1 WSL Ubuntu Terminal uname -a
WSL Ubuntu Docker 20.10.22 WSL Ubuntu Terminal docker version
ORdocker --version
WSL Ubuntu Nvidia Docker 20.10.22 WSL Ubuntu Terminal nvidia-docker --version
3D Slicer 5.2.1 -
Ensure you have WSL (Windows Subsystem for Linux) enabled.
- You need Windows 10 (or greater). Preferably Windows 11
- Method 1:
- Method 2:
- In a command prompt (run as Administrator) run
wsl --install
. - Again type
wsl --install
to see the list of available distros. - For e.g. you can type
wsl --install -d Ubuntu
. This will then also open up another window with the Ubuntu terminal. - Next time to open Ubuntu terminal in the same window, just type
wsl -d Ubuntu
- Type
wsl --list
to check the installed distributions. - You can also move Ubuntu to another directory to preserve space following these steps
- In a command prompt (run as Administrator) run
- To remove all distros
- Type
wsl --list
orwsl -l -v
to see the list of installed distros - To uninstall a distro type
wsl --unregister <distro-name>
- Type
- WSL Command list (link)
-
Installing Docker (if you installed WSL Ubuntu)
- Open Terminal
- By simply searching in Windows Start menu OR
- Open a command prompt and type
wsl -d Ubuntu
- Install docker by following these instructions
- Start docker by typing
sudo service docker start
and check bysudo service docker status
- Test docker by typing
docker version
ORdocker run hello-world
- You can see the downloaded image by
docker images
- Open Terminal
-
Installing the nvidia-container toolkit in WSL Ubuntu (for WSL Ubuntu docker to be able to access Windows Nvidia GPU)
- This assumes that your host Windows already has Nvidia drivers installed (i.e.
nvidia-smi
should work in WIndows terminal) - Check if GPU is detected in WSL Ubuntu
- Run
nvidia-smi
in WSL Ubuntu terminal. If that works, then simply install nvidia-container toolkit - If not, install CUDA toolkit in WSL Ubuntu following these instructions. You can double-check the installation by make(ing) this application.
- Run
- Follow the installation process here for nvidia-container-toolkit.
- Note: Ubuntu 20.04 and Ubuntu 22.04 packages are symlinked (redirected) to ubuntu18.04
- Test the installation (assumes docker and nvidia-container toolkit installed)
sudo docker run --rm --gpus all nvidia/cuda:12.0.0-base-ubuntu22.04 nvidia-smi
- Interactive Mode:
sudo docker run -it --gpus all nvidia/cuda:12.0.0-base-ubuntu22.04
. Then runnvidia-smi
- This assumes that your host Windows already has Nvidia drivers installed (i.e.
-
Test if deep learning software installed in WSL Ubuntu is using GPU
- Download and install Miniconda.
- Restart WSL Ubuntu terminal to initialize conda on terminal
- Install pytorch:
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.6 -c pytorch -c conda-forge
and then runpython -c "import torch; print (torch.cuda.get_device_name())"
- Install tensorflow:
conda install cudatoolkit==11.2.2 cudnn==8.1.0.77
andpip install tensorflow==2.10.0
andexport LD_LIBRARY_PATH=/lib64:$LD_LIBRARY_PATH
andexport LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib
. Then runpython -c "import tensorflow as tf; print (tf.config.list_physical_devices('GPU'))"
and this should not show any loading errors.
-
Run MONAILabel docker (to start the MONAILLabel server in WSL Ubuntu)
- Reference video (Link)
- Steps
sudo docker run --gpus all --rm -ti --ipc=host --net=host projectmonai/monailabel:latest
monailabel apps --download --name radiology --output apps
monailabel datasets --download --name Task09_Spleen --output datasets
monailabel start_server --app apps/radiology --studies datasets/Task09_Spleen/imagesTr --conf models deepedit
- Open a web browser on the host Windows machine and type
http://localhost:8000/
.
-
Run MONAILabel 3D Slicer Plugin
- Follow these steps to install the 3D Slicer plugin.
- <more steps to come>
Last active
January 5, 2023 16:48
-
-
Save prerakmody/ff37ef6a4f6aee8ee01505b811121ee7 to your computer and use it in GitHub Desktop.
Docker Container (for MONAILabel) on Windows 11
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment