Last active
January 2, 2016 16:34
-
-
Save primaryobjects/5a28e0c27fd433123f1a to your computer and use it in GitHub Desktop.
Neural Network Sort
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(neuralnet) | |
# Helper method to generate a training set containing size random numbers (a, b, c) and sorted (x, y, z). | |
generateSet <- function(size = 100, max = 100) { | |
# Generate size random numbers between 1 and max. | |
training <- data.frame(a=sample(1:max, size, replace=TRUE), | |
b=sample(1:max, size, replace=TRUE), | |
c=sample(1:max, size, replace=TRUE)) | |
# Generate output examples by sorting the numbers. | |
output <- data.frame() | |
x <- sapply(1:nrow(training), function(i) { | |
row <- training[i, ] | |
sorted <- row[order(row)] | |
output <<- rbind(output, unlist(sorted)) | |
}) | |
# Append output to the training set. | |
names(output) <- c('x', 'y', 'z') | |
cbind(training, output) | |
} | |
# Helper method to restore the original values after scaling. x is the object to unscale, orig is the originally scaled data. | |
unscale <- function(x, orig) { | |
t(apply(x, 1, function(r) { | |
r * attr(orig, 'scaled:scale') + attr(orig, 'scaled:center') | |
})) | |
} | |
# Helper method to run Neural Network Sort manually. Usage: nnsort(fit, data, 20, 77, 18) | |
nnsort <- function(fit, scaleVal, a, b, c) { | |
numbers <- data.frame(a=a, b=b, c=c, x=0, y=0, z=0) | |
numbersScaled <- as.data.frame(scale(numbers, attr(scaleVal, 'scaled:center'), attr(scaleVal, 'scaled:scale'))) | |
round(unscale(compute(fit, numbersScaled[,1:3])$net.result, scaleVal))[,4:6] | |
} | |
# Generate training and cv data. | |
data <- generateSet(1500) | |
# Normalize data. | |
data <- scale(data) | |
# Split for a training and cv set. | |
half <- nrow(data)/2 | |
training <- data[1:half,] | |
cv <- data[(half+1):nrow(data),] | |
# Train neural network. | |
fit <- neuralnet(x + y + z ~ a + b + c, | |
data = training, | |
hidden = c(40, 40), | |
threshold = 0.001, | |
rep=1, | |
learningrate = 0.6, | |
stepmax = 9999999, | |
lifesign = 'full') | |
# Check results. | |
results1 <- round(unscale(compute(fit, training[,1:3])$net.result, data)) | |
results2 <- round(unscale(compute(fit, cv[,1:3])$net.result, data)) | |
# Count rows that are correct. Note, we use round(i, 10) when comparing equality http://stackoverflow.com/a/18668681. | |
correct1 <- length(which(rowSums(round(unscale(training[,4:6], data), 10) == results1) == 3)) | |
correct2 <- length(which(rowSums(round(unscale(cv[,4:6], data), 10) == results2) == 3)) | |
# Calculate accuracy. | |
print(paste('Training:', correct1 / nrow(training) * 100, '% / CV:', correct2 / nrow(cv) * 100, '%')) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment