Last active
September 17, 2018 01:27
-
-
Save primaryobjects/b0c8333834debbc15be4 to your computer and use it in GitHub Desktop.
MNIST machine learning example in R.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(caret) | |
library(doParallel) | |
# Enable parallel processing. | |
cl <- makeCluster(detectCores()) | |
registerDoParallel(cl) | |
# Load the MNIST digit recognition dataset into R | |
# http://yann.lecun.com/exdb/mnist/ | |
# assume you have all 4 files and gunzip'd them | |
# creates train$n, train$x, train$y and test$n, test$x, test$y | |
# e.g. train$x is a 60000 x 784 matrix, each row is one digit (28x28) | |
# call: show_digit(train$x[5,]) to see a digit. | |
# brendan o'connor - gist.github.com/39760 - anyall.org | |
load_mnist <- function() { | |
load_image_file <- function(filename) { | |
ret = list() | |
f = file(filename,'rb') | |
readBin(f,'integer',n=1,size=4,endian='big') | |
ret$n = readBin(f,'integer',n=1,size=4,endian='big') | |
nrow = readBin(f,'integer',n=1,size=4,endian='big') | |
ncol = readBin(f,'integer',n=1,size=4,endian='big') | |
x = readBin(f,'integer',n=ret$n*nrow*ncol,size=1,signed=F) | |
ret$x = matrix(x, ncol=nrow*ncol, byrow=T) | |
close(f) | |
ret | |
} | |
load_label_file <- function(filename) { | |
f = file(filename,'rb') | |
readBin(f,'integer',n=1,size=4,endian='big') | |
n = readBin(f,'integer',n=1,size=4,endian='big') | |
y = readBin(f,'integer',n=n,size=1,signed=F) | |
close(f) | |
y | |
} | |
train <<- load_image_file('train-images-idx3-ubyte') | |
test <<- load_image_file('t10k-images-idx3-ubyte') | |
train$y <<- load_label_file('train-labels-idx1-ubyte') | |
test$y <<- load_label_file('t10k-labels-idx1-ubyte') | |
} | |
show_digit <- function(arr784, col=gray(12:1/12), ...) { | |
image(matrix(arr784, nrow=28)[,28:1], col=col, ...) | |
} | |
train <- data.frame() | |
test <- data.frame() | |
# Load data. | |
load_mnist() | |
# Normalize: X = (X - min) / (max - min) => X = (X - 0) / (255 - 0) => X = X / 255. | |
train$x <- train$x / 255 | |
# Setup training data with digit and pixel values with 60/40 split for train/cv. | |
inTrain = data.frame(y=train$y, train$x) | |
inTrain$y <- as.factor(inTrain$y) | |
trainIndex = createDataPartition(inTrain$y, p = 0.60,list=FALSE) | |
training = inTrain[trainIndex,] | |
cv = inTrain[-trainIndex,] | |
# SVM. 95/94. | |
fit <- train(y ~ ., data = head(training, 1000), method = 'svmRadial', tuneGrid = data.frame(sigma=0.0107249, C=1)) | |
results <- predict(fit, newdata = head(cv, 1000)) | |
confusionMatrix(results, head(cv$y, 1000)) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Draw the digit. | |
show_digit(as.matrix(training[5,2:785])) | |
# Predict the digit. | |
predict(fit, newdata = training[5,]) | |
# Check the actual answer for the digit. | |
training[5,1] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment