Skip to content

Instantly share code, notes, and snippets.

@primaryobjects
Created May 2, 2016 19:44
Show Gist options
  • Select an option

  • Save primaryobjects/c01b79695fee3b08cc10382f0e67eabe to your computer and use it in GitHub Desktop.

Select an option

Save primaryobjects/c01b79695fee3b08cc10382f0e67eabe to your computer and use it in GitHub Desktop.
Parole dataset logistic regression.
male race age state time.served max.sentence multiple.offenses crime violator
1 1 33.2 1 5.5 18 0 4 0
0 1 39.7 1 5.4 12 0 3 0
1 2 29.5 1 5.6 12 0 3 0
1 1 22.4 1 5.7 18 0 1 0
1 2 21.6 1 5.4 12 0 1 0
1 2 46.7 1 6 18 0 4 0
1 1 31 1 6 18 0 3 0
0 1 24.6 1 4.8 12 0 1 0
0 1 32.6 1 4.5 13 0 3 0
1 2 29.1 1 4.7 12 0 2 0
0 2 28.4 1 4.5 12 1 1 0
1 1 20.5 1 5.9 12 0 1 0
1 1 30.1 1 5.3 16 0 3 0
1 1 37.8 1 5.3 8 0 3 0
1 1 41.7 1 5.5 8 0 3 0
1 2 43.5 1 5.2 8 0 1 0
1 1 42.3 1 4.8 16 0 3 0
1 1 21.3 1 5.1 8 0 1 0
1 2 24.5 1 6 16 0 3 0
1 1 42.3 1 5.8 16 0 1 0
1 1 31.6 1 4.9 8 0 1 0
1 2 35.4 1 5.3 8 0 3 0
1 1 41.9 1 5.1 16 0 3 0
1 1 38.9 1 5.2 16 0 3 0
1 2 23 1 5.3 8 0 1 0
1 1 29.5 1 3.9 16 0 1 1
1 1 32.8 1 5.9 16 0 3 0
1 2 32.4 1 5.1 8 0 1 0
1 1 29.7 1 5.8 8 0 2 0
1 1 28.7 1 6 8 0 1 0
1 1 50.2 1 6 8 0 1 0
1 1 25.9 1 0.5 16 0 1 0
1 2 49.9 1 4.7 16 0 1 0
1 1 47.1 1 5.4 13 0 1 0
1 1 36.7 1 0.9 16 0 3 0
1 1 37.2 1 2 16 0 1 1
1 1 23.2 1 0.9 16 0 1 0
1 1 31.4 1 0.7 16 0 1 0
1 1 39.1 1 0 16 0 3 0
0 1 50.6 1 3 12 0 1 0
0 1 36.3 1 5.2 16 0 2 0
1 1 29.9 1 4.8 12 1 1 1
1 1 27.5 1 3.8 12 1 3 1
1 1 28.1 1 4.2 12 1 2 0
1 1 34.2 1 4.4 12 1 1 1
1 2 36.5 1 3.9 12 1 4 1
1 1 33.5 1 4.2 12 1 1 1
1 1 55 1 4.2 12 1 4 0
1 1 31.2 1 5.2 15 1 4 0
1 1 39.6 1 4.7 13 1 4 0
1 1 37.3 1 4.6 12 1 1 1
1 1 21.1 1 4.9 12 1 1 0
1 1 34.9 1 4.5 12 1 4 1
1 1 24.9 1 0.1 18 1 1 0
0 1 61.6 1 4.5 12 1 1 0
1 1 48 1 5.2 12 1 1 0
1 1 41.7 1 4.4 12 1 1 1
1 1 21.4 1 4.3 12 1 1 0
1 1 54.5 1 4.1 12 1 1 0
1 2 38.8 1 3.7 12 1 1 0
1 1 20.2 1 2.1 12 1 1 0
1 1 41.4 1 4.1 12 1 1 1
1 1 48.2 1 5.3 12 1 2 1
1 1 32.2 1 4.9 12 1 1 1
1 1 33.7 1 0.2 12 1 1 0
0 1 39.7 1 4.4 12 1 3 1
1 1 35 1 1.2 18 1 1 0
1 2 57.5 2 5.9 12 0 1 0
1 2 57.5 2 5.9 12 0 1 0
0 1 42.4 2 3.6 12 0 3 0
0 1 25.3 2 4.8 12 0 2 0
0 1 37.5 2 4.8 12 0 1 0
0 1 22.3 2 4 12 0 2 0
0 2 40.1 2 5.2 12 0 1 0
0 2 40.3 2 5.9 12 1 3 0
0 1 33.2 2 4.8 12 0 1 0
0 1 33.2 2 4.8 12 0 1 0
0 1 43.5 2 2.5 12 0 3 0
0 1 43.6 2 3.8 12 0 3 0
0 1 43.6 2 3.8 12 0 3 0
1 1 33.7 2 5.2 12 0 3 1
1 2 20.6 2 4.2 12 0 3 1
1 2 34.8 2 5.1 12 0 1 0
1 1 25 2 5.3 12 0 1 0
0 1 39 2 5.7 18 0 3 0
1 1 30.8 2 5.1 12 0 2 0
1 1 29.9 2 4 12 0 3 1
1 1 37.4 2 4.9 12 0 3 1
1 1 41.1 2 4.2 12 0 4 0
1 2 26.6 2 2.6 12 0 1 0
1 1 20.5 2 3.2 12 1 1 1
1 1 51.1 2 4.4 18 1 3 0
0 1 27.7 2 5.3 18 0 3 0
0 1 25.7 2 5.5 12 0 3 0
0 1 22 2 5.3 12 1 3 0
1 1 26.9 2 4.5 18 0 3 0
1 1 47.2 2 5.1 12 0 3 0
1 1 31.5 2 4.5 12 0 3 0
0 2 21 2 5.2 18 0 3 0
0 2 24.2 2 4.8 12 0 1 0
1 1 37.3 2 3.5 12 0 3 0
1 1 22.6 2 4.7 12 0 1 0
0 1 35 2 5.7 12 0 3 0
1 1 22.4 2 4.7 12 0 1 0
1 1 22 2 5.1 12 0 3 0
1 1 51.2 2 5.6 18 0 1 0
1 2 41 2 4.7 12 0 3 0
1 1 27 2 5.2 12 0 1 0
1 1 21.9 2 5.5 12 0 3 0
0 1 21.5 2 5.2 12 0 3 0
0 1 24.2 2 5 12 0 1 0
1 1 51.1 2 5.1 12 0 1 0
1 1 18.8 2 4.9 12 0 1 0
1 1 32.5 2 4.4 12 0 3 0
1 1 24.3 2 6 12 0 3 0
1 1 50.5 2 4.8 12 0 3 0
1 1 23.4 2 5.2 12 0 2 0
1 1 21.4 2 5.6 18 0 1 0
1 1 32.4 2 5.3 12 0 3 0
1 1 45 2 3.5 12 0 3 0
1 1 46.7 2 5.1 12 0 3 0
1 1 23.2 2 5.2 18 0 3 0
1 2 41.3 2 4.9 12 1 3 1
1 1 43.4 2 4.7 18 1 3 0
0 1 29.1 2 4.9 12 0 3 0
1 1 40.4 2 4.2 12 0 1 0
1 2 39 2 5.3 12 0 1 0
1 2 23.3 2 5.2 12 0 3 0
1 2 23.3 2 5.2 12 0 3 0
1 2 18.7 2 5.2 12 0 1 1
1 2 32 2 5.5 12 0 3 0
1 1 21.9 2 5.3 12 0 3 0
1 1 28.3 2 5.8 12 0 3 0
1 1 35.1 2 5.1 14 0 2 0
0 2 39.8 2 4.5 12 1 1 1
0 1 29 2 5.9 12 0 3 0
0 1 36.2 2 5.1 12 1 2 0
0 1 36.2 2 5.1 12 1 2 0
0 1 44.4 2 4.9 12 0 2 1
0 1 32.3 2 4.9 12 0 2 0
1 1 24.2 2 4.7 12 1 2 0
1 1 45.9 2 4.5 12 0 3 0
1 1 45.9 2 4.5 12 0 3 0
0 1 26.8 2 4.9 12 0 1 1
1 1 56.8 2 4.4 12 0 3 0
1 1 56.8 2 4.4 12 0 3 0
1 2 48.9 2 4.1 12 0 1 0
1 1 39.2 2 5.2 12 0 1 0
1 1 39.2 2 5.2 12 0 1 0
1 1 38.3 2 4.9 12 0 1 1
0 1 41.3 2 5.9 12 0 3 0
0 1 41.3 2 5.9 12 0 3 0
1 1 39.1 2 4.2 12 0 3 0
0 2 25.6 2 3.7 12 0 1 1
0 1 22.4 2 3.4 12 0 3 1
0 1 30.2 2 5 12 1 1 0
1 1 53.5 2 5.5 12 0 1 0
1 1 53.5 2 5.5 12 0 1 0
1 1 43 2 4.9 12 0 1 0
1 1 21.8 2 4.7 12 0 3 0
1 1 21.8 2 4.7 12 0 3 0
1 1 31 2 5.1 12 0 3 0
1 1 31 2 5.1 12 0 3 0
1 1 32.7 2 5.1 12 1 1 0
1 1 32.7 2 5.1 12 1 1 0
1 1 26.3 2 4.3 12 0 3 0
1 1 26.3 2 4.3 12 0 3 0
0 1 44 2 5.4 12 0 3 0
0 1 44 2 5.4 12 0 3 0
1 1 27.4 2 5.2 12 0 3 1
1 1 37.2 2 6 12 0 3 0
1 1 37.2 2 6 12 0 3 0
1 1 32.2 2 3 12 0 1 0
1 1 19.2 2 1.8 12 0 1 0
1 1 19.5 2 5.3 12 0 1 0
1 1 19.5 2 5.3 12 0 1 0
1 2 46.1 2 1.8 12 0 4 0
1 2 46.3 2 4.4 12 0 4 0
1 2 46.3 2 4.4 12 0 4 0
1 1 45.1 2 2.4 12 0 1 0
1 1 45.4 2 5.9 12 0 1 0
1 1 45.4 2 5.9 12 0 1 0
1 1 48.5 2 3.2 12 0 3 0
1 1 48.7 2 5.7 12 0 3 0
1 1 48.7 2 5.7 12 0 3 0
1 1 39.4 2 4.2 12 0 3 0
1 1 20.7 2 4.5 12 0 3 0
1 1 49.9 3 4.2 18 0 1 0
1 2 46.7 3 1.1 12 1 1 0
0 2 46.5 3 2.7 13 1 2 1
1 1 43.8 3 2.9 1 1 4 0
1 2 41.2 3 6 12 1 3 0
1 2 43.6 3 5.4 16 1 1 1
1 2 38.7 3 6 9 1 1 1
1 2 44.9 3 0.8 1 1 1 1
1 1 44.7 3 2.2 12 1 4 1
0 2 48.8 3 5.3 10 1 2 1
1 2 37 3 2.7 3 1 3 0
1 2 35.5 3 0.5 4 1 3 0
1 2 43.6 3 1.1 18 1 3 1
1 2 35.2 3 4.5 6 1 1 0
1 1 31.2 3 5.3 9 1 1 0
1 2 32.8 3 5 8 1 3 1
1 2 35.9 3 5.7 10 1 3 0
1 2 28.8 3 5.7 8 1 1 0
1 2 41.3 3 4.7 3 1 1 1
1 1 45.8 3 2 6 1 1 1
1 2 34.5 3 4.5 6 1 1 0
0 1 38.4 3 3.6 6 1 1 0
1 2 28.1 3 0.8 18 1 1 1
1 2 28.9 3 6 9 1 1 1
0 2 51.4 3 4.2 6 1 3 1
0 1 26.4 3 2.8 2 1 1 0
1 2 30.7 3 5.9 12 1 3 1
1 2 33.7 3 5.8 18 1 3 1
1 2 27.3 3 0.8 11 1 1 0
1 1 23.7 3 1.3 5 1 2 1
1 2 31.5 3 2.4 6 1 1 1
1 1 52.5 3 5.6 11 0 1 1
1 1 38.1 3 5.8 1 1 1 0
1 2 24.2 3 3.4 11 0 1 1
0 1 28 3 0.9 12 1 1 0
1 1 45 3 3.9 2 1 4 0
1 2 49.3 3 3.7 6 1 1 1
1 2 27.2 3 5.1 6 1 1 0
1 1 23 3 2.9 12 1 2 0
0 2 26.4 3 5.1 6 1 1 0
0 2 23 3 4.1 8 0 2 0
1 2 21.9 3 1.7 11 1 2 0
1 2 21.2 3 1.9 12 1 1 0
0 1 40.3 3 5 6 1 3 0
0 1 25.3 3 6 6 1 2 1
1 1 25.8 3 5.7 14 1 1 1
1 2 23.6 3 1.6 9 1 1 1
1 2 23.3 3 0.3 8 1 2 1
1 2 21.7 3 1.7 18 1 2 1
1 1 23 3 1.1 18 1 3 0
1 2 24.3 3 1.1 12 0 2 0
0 2 30.8 3 5.6 12 0 2 1
1 2 19.9 3 1.4 3 1 3 1
1 2 22.5 3 6 12 0 1 0
1 2 20.2 3 1.7 6 1 3 1
1 2 20.3 3 5.2 12 1 3 0
1 2 42.1 3 0.1 18 1 3 1
0 2 43.2 3 5.8 12 1 2 0
1 1 31 3 4.9 5 0 2 1
1 2 43.3 3 5.6 9 0 3 0
1 2 28.4 3 2.2 12 1 1 1
1 2 20.3 3 1.4 12 1 1 1
0 2 21.2 3 5.8 8 0 2 0
0 1 25.7 3 4 18 0 1 0
1 1 31.4 3 1.9 12 1 1 1
1 1 30 3 4.5 9 0 3 0
1 2 21.6 3 4 8 1 3 1
1 1 20.7 3 2.7 12 0 1 0
1 1 20 3 3.1 6 0 1 0
0 2 22.8 3 5.9 12 0 1 1
1 2 55 3 5.8 8 0 1 0
1 2 31.1 3 4.4 12 0 1 0
1 1 53.5 3 4.7 9 0 2 0
0 1 51.1 3 2 2 0 4 0
1 2 18.4 3 4 8 0 1 0
1 1 21.2 3 1.3 1 0 4 0
1 1 20 3 2 2 0 1 0
1 2 25.5 3 1.5 12 0 1 0
0 2 34.1 3 2.7 12 0 3 1
1 1 35.8 3 2.7 15 0 1 0
0 1 28.3 3 4 4 0 3 0
1 1 45 3 5 6 0 1 1
1 1 47.5 1 4.5 18 0 1 0
1 1 54.4 1 4.7 18 0 1 0
1 2 41.7 1 4 12 0 3 0
1 2 35.1 1 3.4 12 0 3 0
1 1 39.9 1 4 12 0 1 0
1 1 31.3 1 4.9 12 0 3 0
1 1 23.6 1 4.2 12 1 1 0
1 1 36.2 1 4.8 12 0 1 0
1 1 30.7 1 2.2 12 0 3 0
0 2 23.2 1 2.9 12 0 3 0
1 1 35.6 1 2.4 12 0 1 0
1 1 28.8 1 3.2 12 0 4 1
0 1 51.8 1 6 12 0 1 0
1 2 48.5 1 3.7 12 0 1 1
0 1 44.8 1 5.2 12 1 2 0
1 2 26 1 5.2 18 0 1 1
1 2 51.8 1 6 18 0 1 0
1 1 25.9 1 5.6 12 1 1 0
0 1 41.2 1 6 12 1 3 0
1 1 34.2 1 6 12 1 3 0
1 2 43.3 1 5.8 11 0 1 0
1 1 19.6 1 5.5 12 0 1 0
1 1 48.4 1 6 12 1 1 1
1 1 39.8 1 5.3 12 0 3 0
1 1 45.1 1 5.2 12 0 4 0
1 1 63.4 1 4 6 1 1 0
1 1 25.3 1 6 12 0 4 0
0 1 23.2 1 5.3 9 0 1 0
1 1 36.7 1 5.8 12 0 1 0
0 1 20.9 1 5.3 12 1 1 0
1 1 28.9 1 5.8 12 0 1 0
0 1 34.7 1 3.9 6 0 3 0
1 1 22.6 1 5.5 12 1 3 0
1 1 20.7 1 6 12 1 1 0
1 1 19.4 1 3.8 4 0 1 0
0 1 33.3 1 5.1 13 0 1 1
1 1 45 1 0.7 13 0 2 1
1 1 31 1 4.9 12 0 3 0
1 1 54.9 1 3.1 12 0 1 0
1 1 25.7 1 4.2 8 0 1 0
1 1 37.8 1 4.6 18 0 4 0
1 1 19.1 1 4.5 18 0 3 0
1 1 61.4 1 4.3 18 0 4 0
1 1 25.1 1 4 18 0 2 0
1 1 21 1 4.5 18 0 3 0
1 1 24.2 1 5.4 18 0 4 0
1 1 59.4 1 3.1 12 0 4 0
1 1 56.4 1 3 12 0 4 0
1 1 53 1 3 18 0 4 0
1 1 54.8 1 2.9 9 0 4 0
0 1 52.1 1 4.8 18 0 4 0
0 1 45 1 2.9 12 0 4 0
1 1 47.7 1 3.1 18 0 4 0
0 1 42 1 2.9 12 0 4 0
1 1 20.5 1 3 12 0 1 0
1 1 19.4 1 4.5 18 1 1 0
1 1 33.9 1 4.4 18 0 4 0
1 1 26.5 1 3.7 18 0 4 0
1 1 21.9 1 3 12 0 3 0
1 1 58.5 1 5.1 15 0 2 0
1 1 53.9 1 4.2 18 0 4 0
0 1 53 1 2.7 12 0 4 0
1 1 51.8 1 4.6 18 0 4 0
1 1 43.5 1 3 12 0 3 0
1 1 26.9 1 3 12 0 4 0
1 1 42.6 1 4.6 18 0 4 0
1 1 25.8 1 4.4 18 0 1 0
1 1 24 1 3 18 0 4 0
1 1 50.9 1 4.4 18 0 4 0
0 1 28.8 1 4.5 18 0 4 0
0 1 35.6 1 4.4 18 0 4 0
1 1 44.6 1 4.4 18 0 4 0
0 2 22.5 4 4.6 15 1 1 0
1 1 36.1 4 4.9 14 1 1 0
1 1 44.9 4 5.3 12 1 1 0
0 2 31.2 4 2.9 12 0 3 0
0 1 30.3 4 4.4 15 1 1 0
1 1 43 4 3 12 0 1 0
1 1 44 4 3.7 14 1 1 0
0 2 36.2 4 3.1 13 1 1 0
1 1 25.6 4 3.5 12 0 1 0
1 1 33.2 4 3.8 15 1 1 0
1 2 34.9 4 4.5 15 0 2 0
1 2 43.8 4 5.5 18 0 2 0
1 1 36.1 4 4.4 15 1 1 0
1 1 55.7 4 4.6 15 1 1 0
0 2 22 4 5.9 18 1 2 0
1 2 20.2 4 3.2 14 1 1 0
1 1 24.2 4 5.2 17 1 1 0
1 2 19.7 4 2.2 13 1 1 0
1 1 46.3 4 5.9 17 0 3 0
1 2 29.6 4 5.2 17 1 3 0
0 2 30 4 5.5 16 1 2 0
1 2 34.6 4 5.1 15 1 2 0
1 1 45.5 4 3.8 16 1 4 0
1 2 27.5 4 4.8 16 0 4 0
1 1 41.2 4 3 13 1 1 0
1 2 23.2 4 5.3 13 1 1 0
1 1 36.3 4 5.5 18 0 3 0
1 2 44.3 4 4.4 12 1 2 0
1 1 53.8 4 3.6 14 1 1 0
0 2 42.3 4 3.3 12 1 2 0
1 2 47.8 4 3.3 13 1 2 0
1 1 23.1 4 4.4 16 1 4 0
1 2 42.5 4 5.7 18 1 4 0
1 1 19.6 4 4.4 13 1 1 0
1 1 20.8 4 3.4 13 1 2 0
1 2 32.2 4 3.1 13 1 2 0
1 2 25.7 4 3.1 13 1 3 0
1 2 31.7 4 3 13 1 4 0
0 2 39.7 4 5.5 13 1 1 0
1 2 34.4 4 5.4 17 1 2 0
0 1 31.8 4 4 13 1 1 0
1 2 36.7 4 3.4 14 1 3 0
0 2 39.5 4 5.6 15 0 1 0
1 1 20.7 4 3.9 15 1 1 0
1 2 29.2 4 3 13 1 4 0
1 1 46 4 3.2 12 1 4 0
1 2 38 4 3.7 15 0 2 0
1 2 38.1 4 3 12 1 3 0
1 2 40.8 4 3 12 0 4 0
1 1 33.8 4 4.1 15 1 2 0
1 2 52.6 4 3.2 12 1 2 0
0 1 38.6 4 5.3 14 1 4 0
1 2 22.1 4 3.8 15 0 1 0
0 2 46 4 4.5 15 1 1 0
1 2 36.5 4 4.7 13 0 1 0
0 2 46.9 4 4.1 16 0 2 0
0 1 25.3 4 3.2 12 1 1 0
1 1 28.7 4 2.9 12 0 4 0
1 2 24.5 4 4.3 16 0 1 0
0 2 40.9 4 3.2 12 1 2 0
1 2 27.1 4 5.2 13 1 1 0
0 2 36.6 4 3.7 15 1 1 0
1 2 28.5 4 4.5 18 1 4 1
1 2 43.5 4 3.7 15 1 1 0
0 2 24.7 4 4.8 15 0 1 0
1 1 18.5 4 3 13 1 1 0
1 2 32.9 4 3 12 1 1 0
1 2 36.5 4 3 12 1 2 0
1 2 45.6 4 4.5 16 1 1 0
1 2 41.9 4 4.4 15 0 1 0
0 2 35 4 4.6 14 1 1 0
1 2 19.6 4 4.1 13 1 4 0
0 2 28.7 4 5.4 18 0 2 0
1 2 33.4 4 3 12 1 3 0
1 2 38.4 4 6 14 1 2 0
1 1 20.4 4 2 12 1 3 0
0 1 43.4 4 4.1 12 1 2 0
1 2 34.5 4 4.2 12 1 1 0
1 2 51.7 4 4.2 12 1 1 0
1 1 23.7 4 3.1 14 1 4 0
0 1 51.1 4 3.1 13 1 4 0
1 1 26.5 4 5.9 18 0 1 0
1 2 46.4 4 4 13 1 4 0
1 2 47.5 4 5.4 18 0 1 0
1 1 27.9 4 4.3 14 1 1 0
1 2 23.8 4 3.7 15 1 1 0
0 2 50.2 4 6 18 0 3 0
1 2 34.3 4 3 13 1 2 0
1 1 40.1 4 3.7 14 1 1 0
1 1 44.9 4 3 12 1 2 0
1 2 32.9 4 5 16 1 4 0
1 1 21.4 4 3.1 14 1 1 0
1 1 45.4 4 3.6 15 1 4 0
0 1 21.7 4 4.1 12 0 2 0
1 1 48.8 4 4.6 16 1 2 0
1 2 35.4 4 3 13 1 2 0
1 2 65.1 4 5.2 18 0 1 0
0 2 37.5 4 3.3 12 0 3 0
1 1 59.4 4 3.6 14 1 4 0
1 2 33.5 4 3.9 14 0 2 0
0 1 39.8 4 3 13 1 1 0
1 2 23.6 4 4.9 16 0 1 0
1 2 26.8 4 3.8 15 1 1 0
1 1 46.2 4 5.6 18 1 1 0
1 2 19.7 4 3 14 1 1 0
1 2 19.6 4 3 13 1 1 0
0 2 39.2 4 3 13 1 2 0
1 2 20.6 4 4.8 15 1 3 0
1 2 32.1 4 3.8 14 0 3 0
1 2 67 4 4.6 14 1 1 0
1 2 22 4 3.8 14 1 4 0
1 1 41.6 4 5.1 17 1 2 0
1 2 47 4 5.6 18 0 1 0
0 1 49 4 4.9 15 1 2 0
0 1 35.3 4 3 13 1 4 0
1 1 50.1 4 3.1 12 1 4 0
1 2 32.1 4 3 12 1 1 0
1 1 42.5 4 3 12 1 1 0
1 2 25 4 3.6 15 1 1 0
0 1 42.8 4 5.9 17 1 2 0
1 1 21.1 4 4.1 13 1 1 0
1 1 44.3 4 5.9 18 0 3 0
1 1 30.8 4 4.3 13 1 1 0
1 1 21.9 4 3.9 14 1 2 0
1 2 29.5 4 4.4 15 1 1 0
1 1 24.5 4 4 14 1 4 0
1 2 24.9 4 3 12 1 2 0
1 1 27 4 5.1 17 1 1 0
1 1 19.4 4 3.7 13 1 1 0
0 1 37.5 4 3.2 14 1 4 0
1 1 25.2 4 4.7 13 1 4 0
1 1 51.3 4 4 15 1 2 0
1 1 54.4 4 5.1 18 0 4 0
0 1 44.1 4 5.5 15 1 3 0
1 1 31 4 3 12 0 1 0
1 2 29.2 4 3.2 14 1 1 0
1 2 43.4 4 2 12 0 1 0
1 2 42.5 4 4.2 15 0 1 0
0 2 32.8 4 4.6 15 0 1 0
1 1 22.9 4 5.1 16 1 4 0
1 2 31.8 4 4.2 15 1 1 0
1 1 29.7 4 5.3 13 1 1 0
1 1 18.7 4 5.5 17 1 3 0
1 1 18.8 4 4.7 13 1 2 0
1 2 27.8 4 4.1 13 1 4 0
1 2 32.9 4 4.1 15 1 1 0
1 2 23.4 4 4.4 14 1 1 0
0 1 35.8 4 3.9 12 0 3 0
1 1 19.1 4 5.1 18 1 2 0
1 1 20.6 4 4.3 13 1 2 0
1 2 51 4 3 13 0 1 0
1 2 34.9 4 5.1 13 1 2 0
0 2 48.7 4 4 15 0 1 0
1 2 24.4 4 4.3 15 1 1 0
1 2 41.4 4 3.1 13 0 2 0
1 2 36.8 4 3.3 13 0 2 0
1 2 27.8 4 3.3 12 0 3 0
1 2 28.1 4 3 12 1 4 0
1 1 23 4 5.1 18 1 1 0
1 1 27.2 4 4.7 14 1 4 0
1 1 47.8 4 5.3 18 1 2 0
1 2 49 4 4.9 16 0 1 0
1 1 25.6 4 3.6 15 1 1 0
1 2 29.9 4 5.8 18 1 2 0
1 2 20 4 4.1 13 1 1 0
1 1 25.6 4 3 13 1 4 0
1 2 34.3 4 4.6 13 1 4 0
1 2 25 4 4.3 15 1 2 0
1 2 32.9 4 3 12 0 3 0
1 2 23.7 4 4.5 14 1 1 0
1 2 28.5 4 4.2 13 1 1 0
0 2 40.1 4 4.8 14 1 1 0
1 1 40.4 4 2.9 12 0 1 0
0 2 38.5 4 3 12 1 1 0
1 1 22.6 4 3.3 12 1 2 0
1 1 32.4 4 3 12 1 1 0
1 1 24.8 4 4.9 15 1 1 0
1 2 38.2 4 4.7 15 1 3 0
1 2 29.7 4 4.1 14 1 1 0
0 2 44.7 4 3 13 1 1 0
1 2 28.9 4 3.2 13 1 3 0
0 2 28.2 4 3.4 14 1 2 0
1 2 44.1 4 4.6 13 1 1 0
1 1 23.2 4 4.4 15 1 1 0
1 2 29.6 4 3 12 0 1 0
1 2 23.4 4 4.7 17 1 4 0
1 1 28.8 4 3.6 13 1 4 0
1 1 43.8 4 4.2 12 1 3 0
1 1 26.8 4 3.7 15 0 4 0
1 1 23.3 4 5.6 18 1 1 0
1 1 19.2 4 5.5 18 1 2 0
1 2 19.9 4 5.6 18 1 1 0
1 2 36 4 3 13 0 4 0
1 2 21.4 4 3.7 15 1 1 0
1 2 40.3 4 4.4 15 0 1 0
1 2 45.1 4 5.3 12 1 1 0
1 1 38.6 4 2.2 14 1 3 0
1 2 50.1 4 3.9 15 1 4 0
1 2 20.2 4 5.5 13 1 3 0
1 2 23.1 4 6 12 1 4 0
1 1 19 4 3 12 1 1 0
1 2 42.4 4 5.5 17 1 4 0
1 2 43.2 4 5.4 14 1 1 0
1 1 40.3 4 4.2 13 1 3 0
1 1 35.9 4 5.2 13 1 1 0
1 2 23.6 4 4.7 15 1 2 0
0 2 38 4 3.6 14 1 4 0
0 2 32.4 4 3.8 14 1 3 0
1 2 27.8 4 3.9 13 1 4 0
1 1 44.8 4 4.4 14 1 4 0
1 1 37.6 4 3.3 14 1 1 0
1 1 43 4 4.2 13 1 2 0
1 1 19.4 4 3.1 14 1 2 0
1 2 40.9 4 3 12 0 2 0
0 2 46.1 4 4.5 13 1 1 0
1 1 46.6 4 5.7 12 1 4 0
1 2 30.4 4 3 12 0 3 0
1 1 22.8 4 3.5 13 1 1 0
1 1 40 4 3.2 15 0 1 0
1 2 41.3 4 3 13 1 1 0
1 2 25.1 4 5.5 14 1 4 0
1 1 31.1 4 3.3 15 1 1 0
1 2 31.8 4 3.9 12 0 2 0
1 1 39.7 4 5.6 18 1 1 1
1 1 43.1 4 3 12 1 1 0
1 1 38.4 4 4.3 14 0 3 0
1 1 23.6 4 4 13 1 4 0
1 2 40.3 4 5.7 17 1 2 0
1 2 42 4 4.1 14 0 2 0
1 2 42.4 4 5.1 18 0 2 0
1 2 32.1 4 3.3 12 0 3 0
1 2 33.9 4 4.1 12 1 1 0
1 1 28 4 3.4 12 1 1 0
1 2 25.6 4 4.5 14 1 1 0
0 2 32 4 3.7 15 1 3 0
1 2 20.5 4 5.5 18 1 2 0
1 2 33.6 4 5.2 18 0 1 0
1 2 47.1 4 4.4 14 1 1 0
1 2 27.6 4 3 13 1 4 0
1 1 21.2 4 3.7 14 1 2 0
1 1 28.4 4 4.2 12 1 2 0
1 1 38.6 4 3.5 14 1 3 0
1 2 27.6 4 3 12 0 2 0
1 1 19.2 4 3 12 1 1 0
1 1 36.5 4 5.5 18 0 1 0
0 2 35.6 4 3.6 12 1 1 0
1 2 37.4 4 5.4 17 1 1 0
1 2 38.5 4 4.9 10 1 2 0
1 2 19.2 4 4.4 15 1 1 0
1 1 36.3 4 5.6 16 1 1 0
1 2 28.7 4 4.2 14 1 4 0
1 2 28.2 4 3 12 1 1 0
1 1 28.8 4 3 12 1 4 0
1 1 38 4 3.6 13 1 1 0
1 2 41.1 4 3 12 1 2 0
1 2 22.8 4 3.1 12 1 1 0
1 2 29.9 4 4.2 16 1 4 1
1 2 41.1 4 3 14 1 1 1
1 2 46.4 4 4.3 12 1 1 0
1 1 33.9 4 5.2 14 1 1 0
1 2 33 4 5.3 12 0 3 0
1 2 43.8 4 4.4 14 1 1 0
1 1 38.9 4 5.6 12 1 1 0
1 2 44.2 4 3 12 1 1 0
1 2 38.3 4 5 12 1 1 0
1 2 40.6 4 4.9 16 0 3 0
1 2 34 4 3 12 0 1 0
1 1 22.2 4 4.1 15 1 1 0
1 1 33 4 4.5 14 1 2 0
1 1 19.3 4 5.2 13 1 1 0
0 1 30 4 4 13 1 4 0
1 2 47 4 3 15 1 2 1
0 1 21.9 4 4.3 14 1 1 0
1 1 23 4 5.1 13 1 2 0
1 2 43.7 4 5.6 18 1 4 0
1 2 46.8 4 3.7 15 0 1 0
0 2 28.2 4 3.8 15 1 1 0
1 2 20.7 4 3.1 12 1 1 0
1 2 46.7 4 4.2 12 1 1 0
0 2 32.8 4 3.2 14 1 2 0
1 2 23.3 4 3.3 13 1 2 0
1 1 27.7 4 5.2 12 0 1 0
1 1 18.4 4 3 12 1 1 0
1 2 48.5 4 4.7 16 1 1 0
1 1 26.9 4 5.9 17 1 1 0
1 1 30.1 4 3.2 13 1 1 0
1 1 26.9 4 3 13 1 4 0
0 2 47.3 4 4 15 1 1 0
1 2 19.1 4 5.3 14 1 1 0
1 2 24.8 4 3.3 13 0 1 0
1 2 39.6 4 3 12 0 3 0
1 1 25.6 4 2.2 13 1 1 0
1 2 25.6 4 5.4 13 1 2 0
1 2 33.7 4 3.2 15 1 1 0
0 1 44.1 4 3.2 15 1 1 0
1 1 54.1 4 4.2 14 1 4 0
1 1 38.7 4 6 17 1 1 0
0 2 25.1 4 4.2 13 1 1 0
1 2 24.4 4 4.7 15 1 1 0
1 2 45.6 4 3.8 14 0 2 0
1 1 20.8 4 3.6 13 1 1 0
0 2 34.2 4 3.2 12 1 1 0
1 1 33.6 4 4.6 15 1 4 0
0 2 46.9 4 2.3 14 1 1 0
1 1 35.4 4 3.5 15 0 2 0
1 2 44.1 4 4 14 1 2 1
0 2 27.1 4 3.8 15 1 1 0
1 1 34 4 4.8 12 0 1 0
1 1 48.2 4 3.2 14 1 4 0
1 2 24.9 4 4.1 14 1 1 0
1 2 36.5 4 2.9 12 0 1 0
1 2 23.3 4 3.1 14 1 1 0
1 1 47.2 4 3 12 0 1 0
1 2 44.5 4 3.1 14 1 4 0
1 2 25.9 4 3.1 14 0 2 0
1 1 22.3 4 3 12 0 3 0
1 1 19.9 4 3 13 1 1 0
1 1 39.2 4 4.5 17 1 4 1
1 2 21.5 4 3.2 14 1 1 0
1 1 22.1 4 3.8 14 1 1 0
1 1 48.2 4 4.6 13 1 1 0
1 2 23.8 4 4.6 14 1 4 0
1 2 36.3 4 4.1 16 1 2 0
1 1 56.5 4 5.8 18 0 1 0
1 2 36.4 4 2.9 12 1 2 0
1 2 25.4 4 3.4 14 1 1 0
1 2 28.2 4 6 18 1 4 0
1 1 39 4 3.9 14 1 2 0
0 2 42 4 3.3 13 1 1 0
1 1 47.1 4 4.2 16 1 1 0
0 1 47.5 1 5.2 16 0 3 0
1 1 45.4 1 5.7 12 0 3 0
1 1 38.4 1 1.8 18 0 1 0
1 1 47.8 1 6 12 0 4 0
library(caTools)
library(ROCR)
parole <- read.csv('parole.csv')
table(parole$violator)
unique(parole$state)
unique(parole$crime)
parole$state <- as.factor(parole$state)
parole$crime <- as.factor(parole$crime)
set.seed(144)
split = sample.split(parole$violator, SplitRatio = 0.7)
train <- subset(parole, split == TRUE)
test <- subset(parole, split == FALSE)
mod1 <- glm(violator ~ ., data=train, family='binomial')
summary(mod1)
# Our model predicts that a parolee who committed multiple offenses has 5.01 times higher odds of being a violator than a parolee who did not commit multiple offenses but is otherwise identical.
exp(mod1$coefficients['multiple.offenses'])
# or
exp(1.6119919)
# According to the model, what are the odds this individual is a violator?
# -4.2411574 + 0.3869904*male + 0.8867192*race - 0.0001756*age + 0.4433007*state2 + 0.8349797*state3 - 3.3967878*state4 - 0.1238867*time.served + 0.0802954*max.sentence + 1.6119919*multiple.offenses + 0.6837143*crime2 - 0.2781054*crime3 - 0.0117627*crime4.
# This parolee has male=1, race=1, age=50, state2=0, state3=0, state4=0, time.served=3, max.sentence=12, multiple.offenses=0, crime2=1, crime3=0, crime4=0. We conclude that log(odds) = -1.700629.
B <- mod1$coefficients
x <- c(1, 1, 50, 0, 0, 0, 3, 12, 0, 1, 0, 0)
# What are the odds? 0.1825685
logit <- B[1] + B[2]*x[1] + B[3]*x[2] + B[4]*x[3] + B[5]*x[4] + B[6]*x[5] + B[7]*x[6] + B[8]*x[7] + B[9]*x[8] + B[10]*x[9] + B[11]*x[10] + B[12]*x[11]
odds <- exp(logit)
# What is the probability this individual is a violator?
p <- oods / (1 + odds)
predtest <- predict(mod1, type='response', newdata=test)
# What is the maximum predicted probability of a violation? 0.9072791
predtest[order(predtest, decreasing=T)][1]
table(test$violator, predtest >= 0.5)
# FALSE TRUE
# 0 167 12
# 1 11 12
# Sensitivity (true positive rate) = TP / (TP+FN): 0.5217391
12 / (12 + 11)
# Specificity (true negative rate) = TN / (TN+FP): 0.9329609
167 / (167 + 12)
# Accuracy: 0.8861386
(167 + 12) / (167 + 11 + 12 + 12)
# Try against a baseline model, which predicts every parolee as a non-violator.
table(test$violator, test$violator == FALSE)
# FALSE TRUE
# 0 0 179
# 1 23 0
# Accuracy: 0.8861386
179 / (179 + 23)
# The parole board would assign more cost to false negatives (individuals released for parole who then violate).
# If we lower the threshold, more false positives will result, and less false negatives. So, more individuals will be denied parole, even though they're false positives (not likely to violate parole).
# The board assigns more cost to a false negative than a false positive, and should therefore use a logistic regression cutoff less than 0.5.
ROCRpred <- prediction(predtest, test$violator)
as.numeric(performance(ROCRpred, 'auc')@y.values)
# AUC on test set: 0.8945834
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment