Last active
October 28, 2019 10:15
-
-
Save primus-lab/9caad402e11a5687962b9a7d9e1ed238 to your computer and use it in GitHub Desktop.
Primality test using Chebyshev polynomials of the first kind
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Authors: Peter Taylor and Pedja Terzic | |
import sys | |
print(" ***** CHEBYSHEV *****\n\n\n") | |
while True: | |
n=int(input("Enter a number : ")) | |
def is_prime_naive(n): | |
if n <= 2 or n % 2 == 0: | |
return n == 2 | |
return all(n % i != 0 for i in range(3, int(n ** 0.5 + 1), 2)) | |
def is_pseudoprime_chebyshev(n): | |
r = smallest_r(n) | |
if r == 0: | |
return n == 2 | |
# We work with polynomials represented in little-endian format | |
# (poly[i] is the coefficient of x^i) | |
xp, _ = tpair_mod_n_xpowrm1(n, n, r) | |
return normalise_poly(xp) == [0] * (n % r) + [1] | |
def smallest_r(n): | |
if n <= 1 or n % 2 == 0: | |
return 0 | |
for r in range(5, sys.maxsize**10, 2): | |
if not is_prime_naive(r): | |
continue | |
u = n % r | |
if u == 0 and r < u: | |
return 0 | |
if u > 1 and u < r - 1: | |
return r | |
def tpair_mod_n_xpowrm1(m, n, r): | |
"""Returns the tuple (T_m, T_{m+1}) modulo (n, x^r - 1) | |
where T_i is the ith Chebyshev polynomial""" | |
if m == 0: | |
return ([1], [0, 1]) | |
T_k, T_kinc = tpair_mod_n_xpowrm1(m >> 1, n, r) | |
# T_2kinc = 2 * T_k * T_kinc - x | |
T_2kinc = [2 * coeff % n | |
for coeff in convolve_mod_n_xpowrm1(T_k, T_kinc, n, r)] | |
T_2kinc = poly_add_mod_n(T_2kinc, [0, n - 1], n) | |
if m & 1: | |
# m = 2k+1, m+1 = 2k+2 | |
T_m = T_2kinc | |
# T_minc = 2 * T_kinc * T_kinc - 1 | |
# TODO Optimised polynomial squaring | |
T_minc = [2 * coeff % n | |
for coeff in convolve_mod_n_xpowrm1(T_kinc, T_kinc, n, r)] | |
T_minc = poly_add_mod_n(T_minc, [n - 1], n) | |
else: | |
# m = 2k, m+1 = 2k+1 | |
# T_m = 2 * T_k * T_k - 1 | |
T_m = [2 * coeff % n | |
for coeff in convolve_mod_n_xpowrm1(T_k, T_k, n, r)] | |
T_m = poly_add_mod_n(T_m, [n - 1], n) | |
T_minc = T_2kinc | |
return (T_m, T_minc) | |
def convolve_mod_n_xpowrm1(p, q, n, r): | |
""" Calculates the convolution p * q modulo (n, x^r - 1) """ | |
if p == [] or q == []: | |
return [] | |
conv = [0] * min(len(p) + len(q) - 1, r) | |
for i, p_i in enumerate(p): | |
for j, q_j in enumerate(q): | |
idx = (i + j) % r | |
conv[idx] = (conv[idx] + p_i * q_j) % n | |
return conv | |
def poly_add_mod_n(p, q, n): | |
r = [0] * max(len(p), len(q)) | |
for i, p_i in enumerate(p): | |
r[i] = p_i | |
for j, q_j in enumerate(q): | |
r[j] = (r[j] + q_j) % n | |
return r | |
def normalise_poly(p): | |
while len(p) > 0 and p[-1] == 0: | |
p = p[:-1] | |
return p | |
if n < 2: | |
print("Number must be greater than one") | |
elif is_pseudoprime_chebyshev(n): | |
print("prime") | |
else: | |
print("composite") | |
try_again = "" | |
# Loop until users opts to go again or quit | |
while not(try_again == "1") and not(try_again == "0"): | |
try_again = input("Press 1 to try again, 0 to exit. ") | |
if try_again in ["1", "0"]: | |
continue # a valid entry found | |
else: | |
print("Invalid input- Press 1 to try again, 0 to exit.") | |
# at this point, try_again must be "0" or "1" | |
if try_again == "0": | |
break | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment