Created
January 20, 2018 20:42
-
-
Save priscian/31a130d90fb8d6a401774689dda607f3 to your computer and use it in GitHub Desktop.
Plots the Ljungqvist 2010 temperature reconstruction series along with the instrumental HadCRUT4 30N-90N (120-mo. moving average) temp series.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(climeseries) # devtools::install_github("priscian/climeseries") | |
library(xlsx) | |
ljungqvist <- xlsx::read.xlsx2(system.file("extdata/paleo/ljungqvist2010.xls", package="climeseries"), sheetName="Reconstruction", startRow=11, check.names=FALSE, stringsAsFactors=FALSE) | |
matches <- str_match(ljungqvist$Decade, "(\\d+)\u2013(\\d+)") | |
ljungqvist$yr_part <- apply(matches[, 2:3], 1, function(x) mean(as.numeric(x))) | |
yearRange <- range(as.numeric(matches[, 2:3])) | |
allYears <- seq(yearRange[1], yearRange[2]) | |
e <- get_climate_data(download=FALSE, baseline=FALSE) | |
e <- base::merge(expand.grid(month=1:12, year=allYears), e, by=c("year", "month"), all=TRUE) | |
e$yr_part <- e$year + (2 * e$month - 1)/24 | |
e <- tbl_dt(e) | |
l <- tbl_dt(dataframe( | |
yr_part = ljungqvist$yr_part, | |
`Ljungqvist 2010 Reconstruction` = as.numeric(ljungqvist$`Reconstructed temperature`), | |
`Ljungqvist 2010 Reconstruction_uncertainty` = as.numeric(ljungqvist$`Upper error bar`) - as.numeric(ljungqvist$`Lower error bar`))) | |
data.table::setkey(e, yr_part) | |
g <- dplyr::left_join(e, e[, .(year, month, yr_part), with=TRUE][l, roll="nearest"][, yr_part := NULL], by=c("year", "month")) | |
## HadCRUT4: https://crudata.uea.ac.uk/cru/data/temperature/HadCRUT.4.6.0.0.median.nc | |
dataDir <- getOption("climeseries_data_dir") | |
flit <- "HadCRUT.4.6.0.0.median.nc" | |
download.file("https://crudata.uea.ac.uk/cru/data/temperature/HadCRUT.4.6.0.0.median.nc", paste(dataDir, flit, sep="/"), mode="wb", quiet=TRUE) | |
n <- nc_open(paste(dataDir, flit, sep="/")) # 'print(n)' or just 'n' for details. | |
a <- ncvar_get(n, "temperature_anomaly") | |
## Structure of 'a' is temperature_anomaly[longitude, latitude, time], 72 × 36 × Inf (monthly since Jan. 1850) | |
lat <- ncvar_get(n, "latitude") | |
long <- ncvar_get(n, "longitude") | |
times <- ncvar_get(n, "time") | |
tunits <- ncatt_get(n,"time", "units") | |
nc_close(n) | |
tunits | |
# $value | |
# [1] "days since 1850-1-1 00:00:00" | |
dtimes <- as.Date(times, origin="1850-01-01") | |
## This data set should have the same length as the "time" dimension of 'a': | |
h <- data.frame(year=year(dtimes), month=month(dtimes), check.rows=FALSE, check.names=TRUE, fix.empty.names=TRUE, stringsAsFactors=FALSE) | |
# h$yr_part <- h$year + (h$month - 0.5)/12 | |
subLat <- c(30, 90); subLong <- c(-180, 180) | |
flit <- apply(a, 3, | |
function(y) | |
{ | |
x <- t(y) | |
w <- cos(matrix(rep(lat, ncol(x)), ncol=ncol(x), byrow=FALSE) * (pi / 180)) # Latitude weights. | |
## Use only subgrid for calculations. | |
keepSubGrid <- list(lat=lat >= subLat[1] & lat <= subLat[2], long=long >= subLong[1] & long <= subLong[2]) | |
x1 <- x[keepSubGrid$lat, keepSubGrid$long, drop=FALSE] | |
w1 <- w[keepSubGrid$lat, keepSubGrid$long, drop=FALSE] | |
nlat <- length(lat[keepSubGrid$lat]) | |
temp <- NULL | |
for (i in seq(1L, nrow(x1), by=nlat)) { | |
xi <- data.matrix(x1[i:(i + nlat - 1L), ]) | |
tempi <- stats::weighted.mean(xi, w1, na.rm=TRUE) | |
temp <- c(temp, tempi) | |
} | |
temp | |
}) | |
instSeries <- "HadCRUT4 30N-90N" | |
instSeriesMa <- instSeries %_% " (120-mo. MA)" | |
h[[instSeries]] <- flit | |
h[[instSeriesMa]] <- MA(h[[instSeries]], 120) | |
h <- tbl_dt(h) | |
g <- dplyr::full_join(g, h, by=c("year", "month")) | |
## The following is a hack, but it should be very close: | |
g[[instSeries %_% "_uncertainty"]] <- g$`HadCRUT4 NH_uncertainty` | |
g[[instSeriesMa %_% "_uncertainty"]] <- MA(g$`HadCRUT4 NH_uncertainty`, 120) | |
series <- c("Ljungqvist 2010 Reconstruction", "HadCRUT4 30N-90N (120-mo. MA)") | |
plot_climate_data(as.data.frame(g), series, conf_int=TRUE, get_x_axis_ticks...=list(min=-3000, by=100), col=c("green", "red"), baseline=1961:1990) | |
### Calculate difference in yearly means for deniers. | |
## See code for 'get_yearly_difference()' at https://github.com/priscian/climeseries/blob/master/R/helper.R#L930 | |
series <- c("HadCRUT4 30N-90N (120-mo. MA)") | |
ytd <- get_yearly_difference(series, 2000, loess=FALSE, loess...=list(span=0.4), data=g) | |
# Difference in °C from 2000–2017 | |
# [,1] | |
# HadCRUT4 30N-90N (120-mo. MA) 0.526 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment