Last active
May 9, 2017 10:03
-
-
Save privefl/968ca64d0175ad4afcc0ad1813b07013 to your computer and use it in GitHub Desktop.
Further optimize genetic algorithm (https://github.com/expectopatronum/ds-learning-club/tree/f1330787a6c509ee259d6a24ecd009cf57633a74/16-genetic-algorithms).
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <Rcpp.h> | |
using namespace Rcpp; | |
// [[Rcpp::export]] | |
bool checkDuplicate(const IntegerMatrix& pop, int ind) { | |
if (ind == 1) { | |
return(true); | |
} else { | |
int i, j, k = ind - 1; | |
int n = pop.nrow(); | |
LogicalVector remains(k, true); | |
int sum_remain = k; | |
for (j = 0; j < k; j++) { | |
for (i = 0; i < n; i++) { | |
if (remains[j]) { | |
if (pop(i, j) != pop(i, k)) { | |
remains[j] = false; | |
sum_remain--; | |
} | |
} | |
if (sum_remain == 0) return(true); | |
} | |
} | |
return(false); | |
} | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
mutate_agent2 <- function(agent_genome, max_mutations = 3) { | |
num_mutations <- sample.int(max_mutations, 1) | |
for (mutation in seq_len(num_mutations)) { | |
swap_indices <- sample.int(length(agent_genome), 2) | |
agent_genome[swap_indices] <- agent_genome[rev(swap_indices)] | |
} | |
agent_genome | |
} | |
run_genetic_algorithm2 <- function(distance_matrix, all_waypoints, generations=5000, population_size=100) { | |
population_subset_size <- floor(population_size / 10) | |
generations_10pct <- floor(generations / 10) | |
n <- length(all_waypoints) | |
population <- replicate(population_size, sample.int(n)) | |
for (generation in seq_len(generations)) { | |
fitness <- rep(NA_real_, ncol(population)) | |
for (i in seq_along(fitness)) { | |
if (checkDuplicate(population, i)) { # cpp | |
fitness[i] <- sum(distance_matrix[cbind(population[-n, i], population[-1, i])]) | |
} | |
} | |
new_population <- matrix(NA_integer_, n, 10 * population_subset_size) | |
ord <- order(fitness, na.last = NA) | |
sorted_fitness <- fitness[ord] | |
for (i in seq_len(population_subset_size)) { | |
agent_genome <- population[, ord[i]] | |
if ((generation %% generations_10pct == 0 || generation == generations - 1) && i == 1) { | |
print(paste("Generation", generation, "best:", sorted_fitness[i], "|", | |
"Unique genomes:", length(sorted_fitness))) | |
} | |
offset <- 10 * (i - 1) | |
# Create 1 exact copy of each of the top road trips | |
new_population[, offset + 1] <- agent_genome | |
# Create 2 offspring with 1-3 point mutations | |
for (offspring in 2:3) { | |
new_population[, offset + offspring] <- mutate_agent2(agent_genome, 3) | |
} | |
# Create 7 offspring with a single shuffle mutation | |
for (offspring in 4:10) { | |
new_population[, offset + offspring] <- shuffle_mutation(agent_genome) | |
} | |
} | |
population <- new_population | |
} | |
population | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
data_store_us <- readr::read_tsv("https://raw.githubusercontent.com/rhiever/Data-Analysis-and-Machine-Learning-Projects/master/optimal-road-trip/my-waypoints-dist-dur.tsv" ) | |
all_waypoints_us <- dplyr::union(data_store_us$waypoint1, data_store_us$waypoint2) | |
build_distance_matrix2 <- function(data_store) { | |
all_waypoints <- dplyr::union(data_store$waypoint1, data_store$waypoint2) | |
n <- length(all_waypoints) | |
dist_m <- matrix(0L, n, n) | |
rows <- match(data_store$waypoint1, all_waypoints) | |
cols <- match(data_store$waypoint2, all_waypoints) | |
dist_m[cbind(rows, cols)] <- dist_m[cbind(cols, rows)] <- data_store$distance_m | |
colnames(dist_m) <- rownames(dist_m) <- all_waypoints # really need names? | |
dist_m | |
} | |
source("https://raw.githubusercontent.com/expectopatronum/ds-learning-club/master/16-genetic-algorithms/data_store_helper.R") | |
library(microbenchmark) | |
print(microbenchmark( | |
"1" = dist_matrix <- build_distance_matrix(data_store_us), | |
"2" = dist_matrix2 <- build_distance_matrix2(data_store_us), | |
times = 10 | |
)) | |
all.equal(dist_matrix, dist_matrix2) | |
#### | |
#### | |
tmpfile <- tempfile(fileext = ".cpp") | |
download.file("https://gist.githubusercontent.com/privefl/968ca64d0175ad4afcc0ad1813b07013/raw/f6f1eb4a93e4a759527f19b57f405e8f3ff7d9d3/checkDuplicate.cpp", destfile = tmpfile) | |
Rcpp::sourceCpp(tmpfile) | |
source("https://gist.githubusercontent.com/privefl/968ca64d0175ad4afcc0ad1813b07013/raw/f6f1eb4a93e4a759527f19b57f405e8f3ff7d9d3/genetic_algo.R") | |
source("https://raw.githubusercontent.com/expectopatronum/ds-learning-club/master/16-genetic-algorithms/list_helper.R") | |
source("https://raw.githubusercontent.com/expectopatronum/ds-learning-club/master/16-genetic-algorithms/genetic_algorithm.R") | |
print(microbenchmark( | |
"1" = run_genetic_algorithm(dist_matrix, all_waypoints_us, | |
generations = 100, population_size = 100), | |
"2" = run_genetic_algorithm2(dist_matrix, all_waypoints_us, | |
generations = 100, population_size = 100), | |
times = 5 | |
)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment