Created
June 13, 2019 00:30
-
-
Save prl900/18b0b1c9cfb2a4f23629053d775c3cf8 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import numpy as np | |
import pandas as pd | |
import imageio | |
im_orig = imageio.imread("cameraman.jpg")[::4,::4].astype(np.float32) / 255 | |
im_orig_df = pd.DataFrame(im_orig) | |
im_df_masked = im_orig_df.copy() | |
im_df_masked.iloc[40,:]=np.nan | |
np_mask = im_df_masked.notnull() | |
imageio.imsave("in.png", im_df_masked.values) | |
# Boolean mask for computing cost only on valid (not missing) entries | |
tf_mask = tf.Variable(np_mask.values) | |
im = tf.constant(im_df_masked.values) | |
shape = im_df_masked.values.shape | |
#latent factors | |
rank = 12 | |
# Initializing random H and W | |
temp_H = np.random.randn(rank, shape[1]).astype(np.float32) | |
temp_H = np.divide(temp_H, temp_H.max()) | |
temp_W = np.random.randn(shape[0], rank).astype(np.float32) | |
temp_W = np.divide(temp_W, temp_W.max()) | |
H = tf.Variable(temp_H) | |
W = tf.Variable(temp_W) | |
WH = tf.matmul(W, H) | |
#cost of Frobenius norm | |
cost = tf.reduce_sum(tf.pow(tf.boolean_mask(im, tf_mask) - tf.boolean_mask(WH, tf_mask), 2)) | |
# Learning rate | |
lr = 0.001 | |
train_step = tf.train.GradientDescentOptimizer(lr).minimize(cost) | |
init = tf.global_variables_initializer() | |
# Clipping operation. This ensure that W and H learnt are non-negative | |
clip_W = W.assign(tf.maximum(tf.zeros_like(W), W)) | |
clip_H = H.assign(tf.maximum(tf.zeros_like(H), H)) | |
clip = tf.group(clip_W, clip_H) | |
steps = 10000 | |
with tf.Session() as sess: | |
sess.run(init) | |
for i in range(steps): | |
sess.run(train_step) | |
sess.run(clip) | |
if i%100==0: | |
print("\nCost: %f" % sess.run(cost)) | |
print("*"*40) | |
learnt_W = sess.run(W) | |
learnt_H = sess.run(H) | |
pred = np.dot(learnt_W, learnt_H) | |
pred_df = pd.DataFrame(pred) | |
print(pred_df) | |
imageio.imsave("out.png", pred_df) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment