Created
February 23, 2019 10:12
-
-
Save prl900/4be8769b8d765209abb7905c1e5a77e9 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras.models import Sequential | |
from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose | |
from keras.optimizers import Adam | |
import matplotlib.pyplot as plt | |
import numpy as np | |
def GetModel(): | |
""" Encoder-Decoder Approach """ | |
""" | |
model = Sequential() | |
model.add(BatchNormalization(axis=3, input_shape=(80, 120, 3))) | |
model.add(Conv2D(64, (5, 5), strides=(2, 2), activation='relu', padding='same')) | |
model.add(BatchNormalization(axis=3)) | |
model.add(Conv2D(128, (3, 3), strides=(2, 2), activation='relu', padding='same')) | |
model.add(BatchNormalization(axis=3)) | |
model.add(Conv2D(256, (3, 3), strides=(2, 2), activation='relu', padding='same')) | |
model.add(BatchNormalization(axis=3)) | |
model.add(Conv2DTranspose(128, (3, 3), strides=(2, 2), activation='relu', padding='same')) | |
model.add(BatchNormalization(axis=3)) | |
model.add(Conv2DTranspose(64, (3, 3), strides=(2, 2), activation='relu', padding='same')) | |
model.add(BatchNormalization(axis=3)) | |
model.add(Conv2DTranspose(1, (5, 5), strides=(2, 2), activation='relu', padding='same')) | |
""" | |
""" Constant size convolution Approach """ | |
model = Sequential() | |
model.add(BatchNormalization(axis=3, input_shape=(80, 120, 3))) | |
model.add(Conv2D(64, (5, 5), activation='relu', padding='same')) | |
model.add(BatchNormalization(axis=3)) | |
model.add(Conv2D(128, (5, 5), activation='relu', padding='same')) | |
model.add(BatchNormalization(axis=3)) | |
model.add(Conv2D(256, (5, 5), activation='relu', padding='same')) | |
model.add(BatchNormalization(axis=3)) | |
model.add(Conv2D(128, (5, 5), activation='relu', padding='same')) | |
model.add(BatchNormalization(axis=3)) | |
model.add(Conv2D(64, (5, 5), activation='relu', padding='same')) | |
model.add(BatchNormalization(axis=3)) | |
model.add(Conv2D(1, (5, 5), activation='relu', padding='same')) | |
#model.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.001), metrics=['accuracy']) | |
#model.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.001), metrics=['mse']) | |
model.compile(loss='mean_absolute_error', optimizer=Adam(lr=0.001), metrics=['mae']) | |
print(model.summary()) | |
return model | |
x = np.load("3zlevels.npy") | |
y = 1000*np.expand_dims(np.load("full_tp_1980_2016.npy"), axis=3)#[44000:, :], axis=3) | |
print("rain mean", y.mean()) | |
print(x.shape) | |
print(y.shape) | |
x_train = x[:4000, :, :, :] | |
y_train = y[:4000, :] | |
x_test = x[4000:5000, :, :, :] | |
y_test = y[4000:5000, :] | |
print("train x mean", x[:4000, :].mean()) | |
print("test x mean", x[4000:5000, :].mean()) | |
model = GetModel() | |
history = model.fit(x_train, y_train, epochs=30, verbose=1, validation_data=(x_test, y_test)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment