Skip to content

Instantly share code, notes, and snippets.

View prl900's full-sized avatar

Pablo Rozas Larraondo prl900

View GitHub Profile
#!/g/data/v10/public/modules/dea-env/20181015/bin/python
import argparse
import os
locations = """'Yanco',-34.9878,146.2908,2012,2017
'WombatStateForest',-37.4222,144.0944,2010,2017
'Whroo',-36.6732,145.0294,2011,2017
'Warra',-43.09502,146.65452,2015,2017
'WallabyCreek',-34.00206,140.58912,2005,2013
@prl900
prl900 / gdal_merge.py
Created November 7, 2018 23:34
Our gdal_merge
#!/g/data/xc0/software/python/miniconda2/bin/python
###############################################################################
# $Id: gdal_merge.py 33790 2016-03-26 12:42:12Z goatbar $
#
# Project: InSAR Peppers
# Purpose: Module to extract data from many rasters into one output.
# Author: Frank Warmerdam, [email protected]
#
###############################################################################
# Copyright (c) 2000, Atlantis Scientific Inc. (www.atlsci.com)
@prl900
prl900 / vae.py
Created November 14, 2018 00:48
Variational Autoencoder Keras
'''This script demonstrates how to build a variational autoencoder with Keras.
Reference: "Auto-Encoding Variational Bayes" https://arxiv.org/abs/1312.6114
'''
import numpy as np
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
from scipy.stats import norm
from keras.layers import Input, Dense, Lambda
package main
import (
"fmt"
"image"
"io/ioutil"
"log"
"os"
"unsafe"
#!/usr/bin/env python
from ecmwfapi import ECMWFDataServer
from datetime import timedelta, date
def monthly_range(start_date, end_date):
start_date = start_date.replace(day=1)
while start_date < end_date:
last_day_month = start_date + timedelta(days=33)
last_day_month = last_day_month.replace(day=1)
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
from keras.models import Sequential
from keras.layers import BatchNormalization, Conv2D, Conv2DTranspose
from keras.optimizers import Adam
import matplotlib.pyplot as plt
import numpy as np
def GetModel():
""" Encoder-Decoder Approach """
"""
model = Sequential()
import glob
import os
from datetime import datetime
import numpy as np
import xarray as xr
import netCDF4
import argparse
def extract_time(file_name):
fname = os.path.splitext(os.path.basename(file_name))[0]
{
"Conventions": "CF-1.6, ACDD-1.3",
"title": "Live Fuel Moisture Content (LFMC), Australia Coverage.",
"summary": "Live Fuel moisture content (LFMC), the mass of water contained within live vegetation in relation to the dry mass, is a critical variable affecting fire interactions with fuel. LFMC is one of the primary variables in many fire behavior prediction models and fire danger indices, as it affects ignition, combustion, the amount of available fuel, fire severity and spread, and smoke generation and composition (Text from Yebra, M., Chuvieco, E., Danson, M., Dennison, P., Hunt, E.R, Jurdao, S., Riano, D., Zylstra, P, 2013. A global review of remote sensing of live fuel moisture content for fire danger assessment: moving towards operational products. Remote sensing of environment.136, 455-468.).",
"license": "Creative Commons with Attribution (https://creativecommons.org/licenses/by/3.0/au/deed.en)",
"publisher_name": "ANU/Fenner School of Environment & Society",
"publisher_emai
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.