Created
August 30, 2019 20:55
-
-
Save prrao87/73a4507be6feba47fbc4ccb7702fc6e7 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class SVMSentiment(Base): | |
"""Predict fine-grained sentiment scores using a sklearn | |
linear Support Vector Machine (SVM) pipeline.""" | |
def __init__(self, model_file: str=None) -> None: | |
super().__init__() | |
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer | |
from sklearn.linear_model import SGDClassifier | |
from sklearn.pipeline import Pipeline | |
self.pipeline = Pipeline( | |
[ | |
('vect', CountVectorizer()), | |
('tfidf', TfidfTransformer()), | |
('clf', SGDClassifier( | |
loss='hinge', | |
penalty='l2', | |
alpha=1e-3, | |
random_state=42, | |
max_iter=100, | |
learning_rate='optimal', | |
tol=None, | |
)), | |
] | |
) | |
def predict(self, train_file: str, test_file: str, lower_case: bool=False) -> pd.DataFrame: | |
"Train model using sklearn pipeline" | |
train_df = self.read_data(train_file, lower_case) | |
learner = self.pipeline.fit(train_df['text'], train_df['truth']) | |
# Predict class labels using the learner and output DataFrame | |
test_df = self.read_data(test_file, lower_case) | |
test_df['pred'] = learner.predict(test_df['text']) | |
return test_df |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment